il HAI=ETD SR IRl F i

[N TSI
B '| | '_'I" I
0 -|I 1[-..'

J.rll.'anr['[l 105 Techmagues
nw; 2B, Apache

MySOL, PHP .. ACID

Bruce Perens' Open Source Series

Managing Linux Systems with Webmin: System Administration and Module Development
Jamie Cameron

Implementing CIFS: The Common Internet File System
Christopher R. Hertel

Embedded Software Development with eCos
Anthony J. Massa

The Linux Development Platform: Configuring, Using, and Maintaining a Complete
Programming Environment
Rafeeq Ur Rehman, Christopher Paul

Intrusion Detection Systems with Snort: Advanced IDS Techniques with Snort, Apache, MySQL,
PHP, and ACID
Rafeeq Ur Rehman

Chapter 1. Introduction to Intrusion
Detection and Snort

Security is a big issue for all networks in today's enterprise environment. Hackers and intruders
have made many successful attempts to bring down high-profile company networks and web
services. Many methods have been developed to secure the network infrastructure and
communication over the Internet, among them the use of firewalls, encryption, and virtual
private networks. Intrusion detection is a relatively new addition to such techniques. Intrusion
detection methods started appearing in the last few years. Using intrusion detection methods, you
can collect and use information from known types of attacks and find out if someone is trying to
attack your network or particular hosts. The information collected this way can be used to harden
your network security, as well as for legal purposes. Both commercial and open source products
are now available for this purpose. Many vulnerability assessment tools are also available in the
market that can be used to assess different types of security holes present in your network. A
comprehensive security system consists of multiple tools, including:

o Firewalls that are used to block unwanted incoming as well as outgoing traffic of data.
There is a range of firewall products available in the market both in Open Source and
commercial products. Most popular commercial firewall products are from Checkpoint
(http://www.checkpoint.com), Cisco (http://www.cisco.com) and Netscreen
(http://www.netscreen.com). The most popular Open Source firewall is the
Netfilter/Iptables (http://www.netfilter.org)-based firewall.

« Intrusion detection systems (IDS) that are used to find out if someone has gotten into or is
trying to get into your network. The most popular IDS is Snort, which is available at
http://www.snort.org.

e Vulnerability assessment tools that are used to find and plug security holes present in
your network. Information collected from vulnerability assessment tools is used to set
rules on firewalls so that these security holes are safeguarded from malicious Internet
users. There are many vulnerability assessment tools including Nmap
(http://www.nmap.org) and Nessus (http://www.nessus.org).

These tools can work together and exchange information with each other. Some products provide
complete systems consisting of all of these products bundled together.

Snort is an open source Network Intrusion Detection System (NIDS) which is available free of
cost. NIDS is the type of Intrusion Detection System (IDS) that is used for scanning data flowing
on the network. There are also host-based intrusion detection systems, which are installed on a
particular host and detect attacks targeted to that host only. Although all intrusion detection
methods are still new, Snort is ranked among the top quality systems available today.

The book starts with an introduction to intrusion detection and related terminology. You will
learn installation and management of Snort as well as other products that work with Snort. These
products include MySQL database (http://www.mysql.org) and Analysis Control for Intrusion
Database (ACID) (http://www.cert.org/kb/acid). Snort has the capability to log data collected

(such as alerts and other log messages) to a database. MySQL is used as the database engine
where all of this data is stored. Using Apache web server (http://www.apache.org) and ACID,
you can analyze this data. A combination of Snort, Apache, MySQL, and ACID makes it
possible to log the intrusion detection data into a database and then view and analyze it later,
using a web interface.

This book is organized in such a way that the reader will be able to build a complete intrusion
detection system by going through the following chapters in a step-by-step manner. All steps of
installing and integrating different tools are explained in the book as outlined below.

Chapter 2 provides basic information about how to build and install Snort itself. Using the basic
installation and default rules, you will be able to get a working IDS. You will be able to create
log files that show intrusion activity.

Chapter 3 provides information about Snort rules, different parts of Snort rules and how to write
your own rules according to your environment and needs. This chapter is very important, as
writing good rules is the key to building a detection system. The chapter also explains different
rules that are part of Snort distribution.

Chapter 4 is about input and output plug-ins. Plug-ins are parts of the software that are compiled
with Snort and are used to modify input or output of the Snort detection engine. Input plug-ins
prepare captured data packets before the actual detection process is applied on these packets.
Output plug-ins format output to be used for a particular purpose. For example, an output plug-in
can convert the detection data to a Simple Network Management Protocol (SNMP) trap. Another
output plug-in is used to log Snort output data into databases. This chapter provides a
comprehensive overview of how these plug-ins are configured and used.

Chapter 5 provides information about using MySQL database with Snort. MySQL plug-in
enables Snort to log data into the database to be used in the analysis later on. In this chapter you
will find information about how to create a database in MySQL, configure a database plug-in,
and log data to the database.

Chapter 6 describes ACID, how to use it to get data from the database you configured in Chapter
5, and how to display it using Apache web server. ACID is a very important tool that provides
rich data analysis capabilities. You can find frequency of attacks, classify different attacks, view
the source of these attacks and so on. ACID uses PHP (Pretty Home Page) scripting language,
graphic display library (GD library) and PHPLOT, which is a tool to draw graphs. A
combination of all of these results in web pages that display, analyze and graph data stored in the
MySQL database.

Chapter 7 is devoted to information about some other useful tools that can be used with Snort.

The system that you will build after going through this book is displayed in Figure 1-1 with
different components.

Figure 1-1. Block diagram of a complete network intrusion detection system
consisting of Snort, MySQL, Apache, ACID, PHP, GD Library and PHPLOT.

/ N

Snort sensor captures
the intruder data and
stores it in MySQL
database using output
plug-in

Intruder tries to attack
hosts present on this
network

Apache web
server with PHP,
GD Library, and

PHPLOT installed

MyS0QL
Database

A user looking at
intrusion data
collected by Snort
through web
browser

As you can see, data is captured and analyzed by Snort. Snort then stores this data in the MySQL
database using the database output plug-in. Apache web server takes help from ACID, PHP, GD
library and PHPLOT package to display this data in a browser window when a user connects to
Apache. A user can then make different types of queries on the forms displayed in the web pages
to analyze, archive, graph and delete data.

In essence, you can build a single computer with Snort, MySQL database, Apache, PHP, ACID,
GD library and PHPLOT. A more realistic picture of the system that you will be able to build
after reading this book is shown in Figure 1-2.

Figure 1-2. A network intrusion detection system with web interface.

Intruder twies to attack
hosts present on this
network

A computer with
Snore, MyS0L.,
Apache, ACID,
FHPLOT, GD
library installed

A user looking at
intrusion data
collected by Snort
through web
brow ser

In the enterprise, usually people have multiple Snort sensors behind every router or firewall. In
that case you can use a single centralized database to collect data from all of the sensors. You
can run Apache web server on this centralized database server as shown in Figure 1-3.

Figure 1-3. Multiple Snort sensors in the enterprise logging to a centralized
database server.

SNort Sensor

Snort Sensor . .
S Snort Sensor

Metwork cloud

Centralized
database server
running MyS0QL.,
Apache, ACID,
PHPLOT, and G

library

A user looking at
intrusion data
collected by Snort
through web
brow ser

1.1 What is Intrusion Detection?

Intrusion detection is a set of techniques and methods that are used to detect suspicious activity
both at the network and host level. Intrusion detection systems fall into two basic categories:
signature-based intrusion detection systems and anomaly detection systems. Intruders have
signatures, like computer viruses, that can be detected using software. You try to find data
packets that contain any known intrusion-related signatures or anomalies related to Internet
protocols. Based upon a set of signatures and rules, the detection system is able to find and log
suspicious activity and generate alerts. Anomaly-based intrusion detection usually depends on
packet anomalies present in protocol header parts. In some cases these methods produce better
results compared to signature-based IDS. Usually an intrusion detection system captures data
from the network and applies its rules to that data or detects anomalies in it. Snort is primarily a
rule-based IDS, however input plug-ins are present to detect anomalies in protocol headers.

Snort uses rules stored in text files that can be modified by a text editor. Rules are grouped in
categories. Rules belonging to each category are stored in separate files. These files are then
included in a main configuration file called snort.conf. Snort reads these rules at the start-up time
and builds internal data structures or chains to apply these rules to captured data. Finding
signatures and using them in rules is a tricky job, since the more rules you use, the more
processing power is required to process captured data in real time. It is important to implement
as many signatures as you can using as few rules as possible. Snort comes with a rich set of pre-

defined rules to detect intrusion activity and you are free to add your own rules at will. You can
also remove some of the built-in rules to avoid false alarms.

1.1.1 Some Definitions

Before we go into details of intrusion detection and Snort, you need to learn some definitions
related to security. These definitions will be used in this book repeatedly in the coming chapters.
A basic understanding of these terms is necessary to digest other complicated security concepts.

1.1.1.1IDS

Intrusion Detection System or IDS is software, hardware or combination of both used to detect
intruder activity. Snort is an open source I1DS available to the general public. An IDS may have
different capabilities depending upon how complex and sophisticated the components are. IDS
appliances that are a combination of hardware and software are available from many companies.
As mentioned earlier, an IDS may use signatures, anomaly-based techniques or both.

1.1.1.2 Network IDS or NIDS

NIDS are intrusion detection systems that capture data packets traveling on the network media
(cables, wireless) and match them to a database of signatures. Depending upon whether a packet
is matched with an intruder signature, an alert is generated or the packet is logged to a file or
database. One major use of Snort is as a NIDS.

1.1.1.3 Host IDS or HIDS

Host-based intrusion detection systems or HIDS are installed as agents on a host. These intrusion
detection systems can look into system and application log files to detect any intruder activity.
Some of these systems are reactive, meaning that they inform you only when something has
happened. Some HIDS are proactive; they can sniff the network traffic coming to a particular
host on which the HIDS is installed and alert you in real time.

1.1.1.4 Signatures

Signature is the pattern that you look for inside a data packet. A signature is used to detect one or
multiple types of attacks. For example, the presence of "scripts/iisadmin” in a packet going to
your web server may indicate an intruder activity.

Signatures may be present in different parts of a data packet depending upon the nature of the
attack. For example, you can find signatures in the IP header, transport layer header (TCP or
UDP header) and/or application layer header or payload. You will learn more about signatures
later in this book.

Usually IDS depends upon signatures to find out about intruder activity. Some vendor-specific
IDS need updates from the vendor to add new signatures when a new type of attack is discovered.
In other IDS, like Snort, you can update signatures yourself.

1.1.1.5 Alerts

Alerts are any sort of user notification of an intruder activity. When an IDS detects an intruder, it
has to inform security administrator about this using alerts. Alerts may be in the form of pop-up
windows, logging to a console, sending e-mail and so on. Alerts are also stored in log files or
databases where they can be viewed later on by security experts. You will find detailed
information about alerts later in this book.

Snort can generate alerts in many forms and are controlled by output plug-ins. Snort can also
send the same alert to multiple destinations. For example, it is possible to log alerts into a
database and generate SNMP traps simultaneously. Some plug-ins can also modify firewall
configuration so that offending hosts are blocked at the firewall or router level.

1.1.1.6 Logs

The log messages are usually saved in file. By default Snort saves these messages under
Ivar/log/snort directory. However, the location of log messages can be changed using the
command line switch when starting Snort. Log messages can be saved either in text or binary
format. The binary files can be viewed later on using Snort or tcpdump program. A new tool
called Barnyard is also available now to analyze binary log files generated by Snort. Logging in
binary format is faster because it saves some formatting overhead. In high-speed Snort
implementations, logging in binary mode is necessary.

1.1.1.7 False Alarms

False alarms are alerts generated due to an indication that is not an intruder activity. For example,
misconfigured internal hosts may sometimes broadcast messages that trigger a rule resulting in
generation of a false alert. Some routers, like Linksys home routers, generate lots of UPnP

related alerts. To avoid false alarms, you have to modify and tune different default rules. In some
cases you may need to disable some of the rules to avoid false alarms.

1.1.1.8 Sensor

The machine on which an intrusion detection system is running is also called the sensor in the
literature because it is used to "sense" the network. Later in this book if the word sensor is used,
it refers to a computer or other device where Snort is running.

1.1.2 Where IDS Should be Placed in Network Topology

Depending upon your network topology, you may want to position intrusion detection systems at
one or more places. It also depends upon what type of intrusion activities you want to detect:
internal, external or both. For example, if you want to detect only external intrusion activities,
and you have only one router connecting to the Internet, the best place for an intrusion detection
system may be just inside the router or a firewall. If you have multiple paths to the Internet, you
may want to place one IDS box at every entry point. However if you want to detect internal
threats as well, you may want to place a box in every network segment.

In many cases you don't need to have intrusion detection activity in all network segments and
you may want to limit it only to sensitive network areas. Note that more intrusion detection
systems mean more work and more maintenance costs. Your decision really depends upon your
security policy, which defines what you really want to protect from hackers. Figure 1-4 shows
typical locations where you can place an intrusion detection system.

Figure 1-4. Typical locations for an intrusion detection system.

Company
Metwork

‘ ‘ Firewall
Internet

w” —
ar o

R.outer

Company
Metwork

As you can see from Figure 1-4, typically you should place an IDS behind each of your firewalls
and routers. In case your network contains a demilitarized zone (DMZ), an IDS may be placed in
that zone as well. However alert generation policy should not be as strict in a DMZ compared to
private parts of the network.

1.1.3 Honey Pots

Honey pots are systems used to lure hackers by exposing known vulnerabilities deliberately.
Once a hacker finds a honey pot, it is more likely that the hacker will stick around for some time.
During this time you can log hacker activities to find out his/her actions and techniques. Once
you know these techniques, you can use this information later on to harden security on your
actual servers.

There are different ways to build and place honey pots. The honey pot should have common
services running on it. These common services include Telnet server (port 23), Hyper Text
Transfer Protocol (HTTP) server (port 80), File Transfer Protocol (FTP) server (port 21) and so
on. You should place the honey pot somewhere close to your production server so that the
hackers can easily take it for a real server. For example, if your production servers have Internet
Protocol (IP) addresses 192.168.10.21 and 192.168.10.23, you can assign an IP address of
192.168.10.22 to the honey pot. You can also configure your firewall and/or router to redirect
traffic on some ports to a honey pot where the intruder thinks that he/she is connecting to a real
server. You should be careful in creating an alert mechanism so that when your honey pot is
compromised, you are notified immediately. It is a good idea to keep log files on some other

10

machine so that when the honey pot is compromised, the hacker does not have the ability to
delete these files.

So when should you install a honey pot? The answer depends on different criteria, including the
following:

e You should create a honey pot if your organization has enough resources to track down
hackers. These resources include both hardware and personnel. If you don't have these
resources, there is no need to install a honey pot. After all, there is no need to have data if
you can't use it.

e A honey pot is useful only if you want to use the information gathered in some way.

e You may also use a honey pot if you want to prosecute hackers by gathering evidence of
their activities.

Ideally a honey pot should look like a real system. You should create some fake data files, user
accounts and so on to ensure a hacker that this is a real system. This will tempt the hacker to
remain on the honey pot for a longer time and you will be able to record more activity.

To have more information and get a closer look at honey pots, go to the Honey Pot Project web
site http://project.honeynet.org/ where you will find interesting material. Also go to the Honeyd
web site at http://www.citi.umich.edu/u/provos/honeyd/ to find out information about this open
source honey pot. Some other places where you can find more information are:

e South Florida Honeynet Project at http://www.sfhn.net
o Different HOWTOs at http://www.sfhn.net/whites/howtos.html

1.1.4 Security Zones and Levels of Trust

Some time ago people divided networks into two broad areas, secure area and unsecure area.
Sometimes this division also meant a network is inside a firewall or a router and outside your
router. Now typical networks are divided into many different areas and each area may have a
different level of security policy and level of trust. For example, a company's finance department
may have a very high security level and may allow only a few services to operate in that area. No
Internet service may be available from the finance department. However a DMZ or de-
militarized zone part of your network may be open to the Internet world and may have a very
different level of trust.

Depending upon the level of trust and your security policy, you should also have different
policies and rules for intruder detection in different areas of your network. Network segments
with different security requirements and trust levels are kept physically separate from each other.
You can install one intrusion detection system in each zone with different types of rules to detect
suspicious network activity. As an example, if your finance department has no web server, any
traffic going to port 80 in the finance department segment may come under scrutiny for intruder
activity. The same is not true in the DMZ zone where you are running a company web server
accessible to everyone.

11

1.2 IDS Policy

Before you install the intrusion detection system on your network, you must have a policy to
detect intruders and take action when you find such activity. A policy must dictate IDS rules and
how they will be applied. The IDS policy should contain the following components; you can add
more depending upon your requirements.

e Who will monitor the IDS? Depending on the IDS, you may have alerting mechanisms
that provide information about intruder activity. These alerting systems may be in the
form of simple text files, or they may be more complicated, perhaps integrated to
centralized network management systems like HP OpenView or MySQL database.
Someone is needed to monitor the intruder activity and the policy must define the
responsible person(s). The intruder activity may also be monitored in real time using pop-
up windows or web interfaces. In this case operators must have knowledge of alerts and
their meaning in terms of severity levels.

e Who will administer the IDS, rotate logs and so on? As with all systems, you need to
establish routine maintenance of the IDS.

e Who will handle incidents and how? If there is no incident handling, there is no point in
installing an IDS. Depending upon the severity of the incident, you may need to get some
government agencies involved.

o What will be the escalation process (level 1, level 2 and so on)? The escalation process is
basically an incident response strategy. The policy should clearly describe which
incidents should be escalated to higher management.

e Reporting. Reports may be generated showing what happened during the last day, week
or month.

« Signature updates. Hackers are continuously creating new types of attacks. These attacks
are detected by the IDS if it knows about the attack in the form of signatures. Attack
signatures are used in Snort rules to detect attacks. Because of the continuously changing
nature of attacks, you must update signatures and rules on your IDS. You can update
signatures directly from the Snort web site on a periodic basis or on your own when a
new threat is discovered.

« Documentation is required for every project. The IDS policy should describe what type of
documentation will be done when attacks are detected. The documentation may include a
simple log or record of complete intruder activity. You may also need to build some
forms to record data. Reports are also part of regular documentation.

Based on the IDS policy you will get a clear idea of how many IDS sensors and other resources

are required for your network. With this information, you will be able to calculate the cost of
ownership of IDS more precisely.

1.3 Components of Snort

Snort is logically divided into multiple components. These components work together to detect
particular attacks and to generate output in a required format from the detection system. A Snort-
based IDS consists of the following major components:

12

o Packet Decoder

o Preprocessors

e Detection Engine

e Logging and Alerting System
e Output Modules

Figure 1-5 shows how these components are arranged. Any data packet coming from the Internet
enters the packet decoder. On its way towards the output modules, it is either dropped, logged or
an alert is generated.

Figure 1-5. Components of Snort.

]]ntcrncré . 9 Packet Decoder

Logging and
Alerti ng
Sysiem

prl;'i'lfl'ln,‘f'xmll:'\ }w‘ DL_‘[I:L.“U:‘ Z\'_r\"
1 Engine

o

Packet is Oulput :
dropped Modules 1

i !
A —

" [l
|

 Output Alertor
[- 1]
i Logtoafile
i !

A brief introduction to these components is presented in this section. As you go through the book
and create some rules, you will become more familiar with these components and how they
interact with each other.

1.3.1 Packet Decoder
The packet decoder takes packets from different types of network interfaces and prepares the

packets to be preprocessed or to be sent to the detection engine. The interfaces may be Ethernet,
SLIP, PPP and so on.

1.3.2 Preprocessors
Preprocessors are components or plug-ins that can be used with Snort to arrange or modify data
packets before the detection engine does some operation to find out if the packet is being used by

an intruder. Some preprocessors also perform detection by finding anomalies in packet headers
and generating alerts. Preprocessors are very important for any IDS to prepare data packets to be

13

analyzed against rules in the detection engine. Hackers use different techniques to fool an IDS in
different ways. For example, you may have created a rule to find a signature "scripts/iisadmin” in
HTTP packets. If you are matching this string exactly, you can easily be fooled by a hacker who

makes slight modifications to this string. For example:

"scripts/./iisadmin™
"scripts/examples/../iisadmin™
"scripts\iisadmin™
"scripts/.\iisadmin"

To complicate the situation, hackers can also insert in the web Uniform Resource Identifier (URI)
hexadecimal characters or Unicode characters which are perfectly legal as far as the web server

is concerned. Note that the web servers usually understand all of these strings and are able to
preprocess them to extract the intended string "scripts/iisadmin”. However if the IDS is looking
for an exact match, it is not able to detect this attack. A preprocessor can rearrange the string so
that it is detectable by the IDS.

Preprocessors are also used for packet defragmentation. When a large data chunk is transferred
to a host, the packet is usually fragmented. For example, default maximum length of any data
packet on an Ethernet network is usually 1500 bytes. This value is controlled by the Maximum
Transfer Unit (MTU) value for the network interface. This means that if you send data which is
more than 1500 bytes, it will be split into multiple data packets so that each packet fragment is
less than or equal to 1500 bytes. The receiving systems are capable of reassembling these smaller
units again to form the original data packet. On IDS, before you can apply any rules or try to find
a signature, you have to reassemble the packet. For example, half of the signature may be present
in one segment and the other half in another segment. To detect the signature correctly you have
to combine all packet segments. Hackers use fragmentation to defeat intrusion detection systems.

The preprocessors are used to safeguard against these attacks. Preprocessors in Snort can
defragment packets, decode HTTP URI, re-assemble TCP streams and so on. These functions are
a very important part of the intrusion detection system.

1.3.3 The Detection Engine

The detection engine is the most important part of Snort. Its responsibility is to detect if any
intrusion activity exists in a packet. The detection engine employs Snort rules for this purpose.
The rules are read into internal data structures or chains where they are matched against all
packets. If a packet matches any rule, appropriate action is taken; otherwise the packet is
dropped. Appropriate actions may be logging the packet or generating alerts.

The detection engine is the time-critical part of Snort. Depending upon how powerful your
machine is and how many rules you have defined, it may take different amounts of time to
respond to different packets. If traffic on your network is too high when Snort is working in
NIDS mode, you may drop some packets and may not get a true real-time response. The load on
the detection engine depends upon the following factors:

14

e Number of rules

e Power of the machine on which Snort is running
e Speed of internal bus used in the Snort machine
e Load on the network

When designing a Network Intrusion Detection System, you should keep all of these factors in
mind.

Note that the detection system can dissect a packet and apply rules on different parts of the
packet. These parts may be:

e The IP header of the packet.

e The Transport layer header. This header includes TCP, UDP or other transport layer
headers. It may also work on the ICMP header.

e The application layer level header. Application layer headers include, but are not limited
to, DNS header, FTP header, SNMP header, and SMTP header. You may have to use
some indirect methods for application layer headers, like offset of data to be looked for.

o Packet payload. This means that you can create a rule that is used by the detection engine
to find a string inside the data that is present inside the packet.

The detection engine works in different ways for different versions of Snort. In all 1.x versions
of Snort, the detection engine stops further processing of a packet when a rule is matched.
Depending upon the rule, the detection engine takes appropriate action by logging the packet or
generating an alert. This means that if a packet matches criteria defined in multiple rules, only
the first rule is applied to the packet without looking for other matches. This is fine except for
one problem. A low priority rule generates a low priority alert, even if a high priority rule
meriting a high priority alert is located later in the rule chain. This problem is rectified in Snort
version 2 where all rules are matched against a packet before generating an alert. After matching
all rules, the highest priority rule is selected to generate the alert.

The detection engine in Snort version 2.0 is completely rewritten so that it is a lot faster
compared to detection in earlier versions of Snort. While Snort 2.0 is still not in release at the
time of writing this book, earlier analysis shows that the new detection engine may be up to
eighteen times faster.

1.3.4 Logging and Alerting System

Depending upon what the detection engine finds inside a packet, the packet may be used to log
the activity or generate an alert. Logs are kept in simple text files, tcpdump-style files or some
other form. All of the log files are stored under /var/log/snort folder by default. You can use
—1 command line options to modify the location of generating logs and alerts. Many command
line options discussed in the next chapter can modify the type and detail of information that is
logged by the logging and alerting system.

15

1.3.5 Output Modules

Output

modules or plug-ins can do different operations depending on how you want to save

output generated by the logging and alerting system of Snort. Basically these modules control the

type of

output generated by the logging and alerting system. Depending on the configuration,

output modules can do things like the following:

Simply logging to /var/log/snort/alerts file or some other file

Sending SNMP traps

Sending messages to syslog facility

Logging to a database like MySQL or Oracle. You will learn more about using MySQL
later in this book

Generating eXtensible Markup Language (XML) output

Modifying configuration on routers and firewalls.

Sending Server Message Block (SMB) messages to Microsoft Windows-based machines

Other tools can also be used to send alerts in other formats such as e-mail messages or viewing
alerts using a web interface. You will learn more about these in later chapters. Table 1-1
summarizes different components of an IDS.

Table 1-1. Components of an IDS

Name Description
Packet Decoder Prepares packets for processing.
Preprocessors or Input Used to normalize protocol headers, detect anomalies, packet re-
Plugins assembly and TCP stream re-assembly.
Detection Engine Applies rules to packets.
Logging and Alerting Generates alert and log messages.
System
Output Modules Process alerts and logs and generate final output.

1.4 Dealing with Switches

Depending upon the type of switches used, you can use Snort on a switch port. Some switches,
like Cisco, allow you to replicate all ports traffic on one port where you can attach the Snort
machine. These ports are usually referred to as spanning ports. The best place to install Snort is
right behind the firewall or router so that all of the Internet traffic is visible to Snort before it
enters any switch or hub. As an example, if you have a firewall with a T1 connection to the
Internet and a switch is used on the inside, the typical connection scheme will be as shown in

Figure 1-6.

16

Figure 1-6. A typical connection scheme with one firewall and switched network.

Firewall

i
—_—1—-— j 7 |oooovoooos Servers used for

Connection to the company
presence on the
Internet

the Interneat
If the switch you are using has a spanning port, you can connect the IDS machine to the spanning
port as shown in Figure 1-7. All network traffic, including internal data flowing among company
servers and the Internet data, will be visible to the IDS.

Figure 1-7. IDS connected a spanning port.

Firewall

Connection to

the Internet
Servers used
for the DS
COmpany connected to
presence on Spanning
the Internet port of the
Switch

You can also connect the IDS to a small HUB or a Network TAP right behind the firewall, i.e.,
between firewall and the switch. In this case all incoming and outgoing traffic is visible to the
IDS. The scheme is shown in Figure 1-8.

Figure 1-8. Connecting an IDS in a switched environment.

17

Firewall
Switch

Connection to

the Internet

DS connected to
HUB sothatall L—" 7 l===
incoming and

outgoing traffic is

visible to i, Servers used lor

the company
presence on the
[nternet

Note that when the IDS is connected as shown in Figure 1-8, data flowing among the company
servers is not visible to the IDS. The IDS can see only that data which is coming from or going
to the Internet. This is useful if you expect attacks from outside and the internal network is a
trusted one.

1.5 TCP Stream Follow Up

A new preprocessor named Stream4 has been added to Snort. This preprocessor is capable of
dealing with thousands of simultaneous streams and its configuration will be discussed in
Chapter 4. It allows TCP stream reassembly and stateful inspection of TCP packets. This means
that you can assemble packets in a particular TCP session to find anomalies and attacks that use
multiple TCP packets. You can also look for packets coming to and/or originating from a
particular server port.

1.6 Supported Platforms

Snort is supported on a number of hardware platforms and operating systems. Currently Snort is
available for the following operating systems:

Linux

OpenBSD

FreeBSD

NetBSD

Solaris (both Sparc and i1386)
HP-UX

AlX

IRIX

MacOS

Windows

18

For a current list of supported platforms, refer to the Snort home page at http://www.snort.org.

1.7 How to Protect IDS Itself

One major issue is how to protect the system on which your intrusion detection software is
running. If security of the IDS is compromised, you may start getting false alarms or no alarms at
all. The intruder may disable IDS before actually performing any attack. There are different ways
to protect your system, starting from very general recommendations to some sophisticated
methods. Some of these are mentioned below.

e The first thing that you can do is not to run any service on your IDS sensor itself.
Network servers are the most common method of exploiting a system.

o New threats are discovered and patches are released by vendors. This is almost a
continuous and non-stop process. The platform on which you are running IDS should be
patched with the latest releases from your vendor. For example, if Snort is running on a
Microsoft Windows machine, you should have all the latest security patches from
Microsoft installed.

e Configure the IDS machine so that it does not respond to ping (ICMP Echo-type) packets.

« Ifyou are running Snort on a Linux machine, use netfilter/iptable to block any unwanted
data. Snort will still be able to see all of the data.

e You should use IDS only for the purpose of intrusion detection. It should not be used for
other activities and user accounts should not be created except those that are absolutely
necessary.

In addition to these common measures, Snort can be used in special cases as well. Following are
two special techniques that can be used with Snort to protect it from being attacked.

1.7.1 Snort on Stealth Interface

You can run Snort on a stealth interface which only listens to the incoming traffic but does not
send any data packets out. A special cable is used on the stealth interface. On the host where
Snort is running, you have to short pins 1 and 2. Pins 3 and 6 are connected to same pins on the
other side. Please see Snort FAQ at http://www.snort.org/docs/fag.html for more information on
this arrangement.

1.7.2 Snort with no IP Address Interface

You can also use Snort on an interface where no IP address is assigned. For example, on a Linux
machine, you can bring up interface etho using command "ifconfig eth0 up" without
assigning an actual IP address. The advantage is that when the Snort host doesn't have an IP
address itself, nobody can access it. You can configure an IP address on ethl that can be used to
access the sensor itself. This is shown in Figure 1-9.

Figure 1-9. Snort sensor with two interfaces. One of these has no IP address
assigned.

19

The eth) interface
has no 1P address Management
assigned o it, Workstation The ethl interface
which makes it has an IP address
assigned 1o it 5o
you can still access
the sensor from
other hosts on vour
private network

mnvisible,

MNetwork through which
intruders are coming., Lisually
connected to the Internet

Snort Sensor

On Microsoft Windows systems, you can use an interface without binding TCP/IP to the
interface, in which case no IP address will be assigned to the interface. Don't forget to disable
other protocols and services on the interface as well. In some cases it has been noted that
winpcap (library used on Microsoft Windows machines to capture packets) does not work well
when no IP address is assigned on the interface. In such a case, you can use the following
method.

« Enable TCP/IP on the network interface that you want to use in the stealth mode. Disable
everything other than TCP/IP.

« Enable DHCP client.

o Disable DHCP service.

This will cause no address to be assigned to the interface while the interface is still bound to
TCP/IP networking.

1.8 References

Intrusion detection FAQ at http://www.sans.org/newlook/resources/IDFAQ/ID_FAQ.htm
Honey Pot Project at http://project.honeynet.org/

Snort FAQ at http://www.snort.org/docs/fag.html

Honeyd Honey Pot at http://www.citi.umich.edu/u/provos/honeyd/
Winpcap at http://winpcap.polito.it/

Cisco systems at http://www.cisco.com

Checkpoint web site at http://www.checkpoint.com

Netscreen at http://www.netscreen.com

Netfilter at http://www.netfilter.org

10. Snort at http://www.snort.org

11. The Nmap tool at http://www.nmap.org

12. Nessus at http://www.nessus.org

13. MySQL database at http://www.mysql.org

14. ACID at http://www.cert.org/kb/acid

©CoNoA~AWNE

20

15. Apache web server at http://www.apache.org

21

Chapter 2. Installing Snort and Getting
Started

A Snort installation may consist of only a working Snort daemon or of a complete Snort system
with many other tools. If you install only Snort, you can capture intrusion data in text or binary
files and then view these files later on with the help of a text editor or some other tool like
Barnyard, which will be explained later in this book. With this simple installation you can also
send alert data to an SNMP manager, like HP OpenView or OpenNMS, in the form of SNMP
traps. Alert data can also be sent to a Microsoft Windows machine in the form of SMB pop-up
windows. However, if you install other tools, you can perform more sophisticated operations on
the intrusion data, such as logging Snort data to a database and analyzing it through a web
interface. Using the web interface, you can view all alerts generated by Snort. The analysis tools
allow you to make sense of the captured data instead of spending lots of time with Snort log files.

Other tools that can be used with Snort are listed below. Each of them has a specific task. A
comprehensive working Snort system utilizes these tools to provide a web-based user interface
with a backend database.

e MySQL is used with Snort to log alert data. Other databases like Oracle can also be used
but MySQL is the most popular database with Snort. In fact, any ODBC-compliant
database can be used with Snort.

Apache acts as a web server.

PHP is used as an interface between the web server and MySQL database.

ACID is a PHP package that is used to view and analyze Snort data using a web browser.
GD library is used by ACID to create graphs.

PHPLOT is used to present data in graphic format on the web pages used in ACID. GD
library must be working correctly to use PHPLOT.

« ADODB is used by ACID to connect to MySQL database.

2.1 Snort Installation Scenarios

Typical Snort installations may vary depending upon the environment where you are installing it.
Some of the typical installation schemes are listed below for your reference. You can select one
of these depending on the type of network you have.

2.1.1 Test Installation

A simple Snort installation consists of a single Snort sensor. Snort logs data to text files. These
log files can then be viewed later on by the Snort administrator. This arrangement is suitable
only for test environments because the cost of data analysis is very high in the production
environment. To install Snort for this purpose, you can get a pre-compiled version from
http://www.snort.org and install it on your system. For RedHat Linux, you can download the
RPM package. For Microsoft Windows systems, download executables and install on your
system.

22

2.1.2 Single Sensor Production IDS

A production installation of Snort with only one sensor is suitable for small networks with only
one Internet connection. Putting the sensor behind a router or firewall will enable you to detect
the activity of intruders into the system. However, if you are really interested in scanning all
Internet traffic, you can put the sensor outside the firewall as well.

In this installation, you can either download a precompiled version of Snort from its web site
(http://www.snort.org) or compile it yourself from the source code. You should compile the
source code yourself only if you need some feature which is not available in the precompiled
versions. The compilation process for Snort is discussed in detail in this chapter.

In a production installation, you also need to implement startup and shutdown procedures so that
Snort automatically starts at boot time. If you are installing a precompiled version for Linux, the
installation procedure with RPM will take care of it. On Microsoft Windows systems, you can
start Snort as a service or put a batch file in the startup group. Issues related to Microsoft
Windows are covered in Chapter 8. The logging is done in text or binary files and tools like
SnortSnarf can be used to analyze data. SnortSnarf is discussed in Chapter 6 in detail.

2.1.3 Single Sensor with Network Management System Integration

In a production system, you can configure Snort to send traps to a network management system.
There are a variety of network management systems used in the enterprise. The most popular
commercial systems are from Hewlett-Packard, IBM and Computer Associates.

Snort integration into these network management systems is done through the use of SNMP traps.
When you go through the compilation process of Snort later in this chapter, you will learn how to
build SNMP capability into Snort. Chapter 4 provides more information about configuring

SNMP trap destinations, community names and so on.

2.1.4 Single Sensor with Database and Web Interface

The most common use of Snort should be with integration to a database. The database is used to
log Snort data where it can be viewed and analyzed later on, using a web-based interface. A
typical setup of this type consists of three basic components:

1. Snort sensor
2. A database server
3. A web server

Snort logs data into the database. You can view the data using a web browser connected to the
sensor. This scheme is shown in Figure 1-1 in Chapter 1. All three components can be present on
the same system as shown in Figure 1-2 in Chapter 1.

23

Different types of database servers like MySQL, PostgresSQL, Oracle, Microsoft SQL server
and other ODBC-compliant databases can be used with Snort. PHP is used to get data from the
database and to generate web pages.

This setup provides a very good and comprehensive IDS which is easy to manage and user
friendly. You have to provide a user name, password, database name and database server address
to Snort to enable it to log to the database. In a single-sensor scheme where the database is
running on the sensor itself, you can use "localhost™ as the host name. You have to build
database logging capability into Snort at the compile time, which will be described later in this
chapter. Configuring Snort to use the database is discussed in Chapter 4, 5 and 6.

2.1.5 Multiple Snort Sensors with Centralized Database

In a corporate environment, you probably have multiple locations where you would like to install
Snort sensors. Managing all of these sensors and analyzing all data collected by these sensors
separately is a very difficult job. There are multiple ways to setup and install Snort in the
enterprise as a distributed 1DS.

One method is shown in Figure 1-3 in Chapter 1 where multiple sensors connect to the same
centralized database. All data generated by these sensors is stored in the database. You run a web
server like Apache (http://www.apache.org). A user then uses a web browser to view this data
and analyze it.

However there are some practical problems with this setup.

o All of the sensors must have access to the database at the time you start Snort. If Snort is
not able to connect to the database at the start time, it dies.

e The database must be available all of the time to all sensors. If any of the network links
are down, data is lost.

e You have to open up additional ports for database logging in firewalls if a firewall lies
between the database server and any of the sensors. Sometime this is not feasible or
against security policy.

You can come up with some alternate mechanisms where Snort sensors do not have a direct
connection to the database server. The sensors may be configured to log to local files. These files
can then be uploaded to a centralized server on a periodic basis using utilities like SCP. The SCP
utility is a secure file transfer program that uses Secure Shell (SSH) protocol. Firewall
administrators usually allow SSH port (port 22) to pass through. You can run certain utilities like
Snort itself,= Barnyard or some other tool to extract data from these log files and put it into the
database server. You can use the usual web interface to view this data later on. The only problem
with this approach is that the data in the database is not strictly "real-time". There is a certain
delay which depends upon frequency of uploading data using SCP to the centralized database
server. This arrangement is shown in Figure 2-1.

1 Snort can be run to get information from its own log files using a command line parameter.

24

Figure 2-1. Distributed Snort installation with the help of tools like SCP and
Barnyard.

Snort Sensor 3

All of these
SN0 SeNsors
upload log
files

periodically > '<

o the the

Metwork cloud
centralized
SErver using
SCP utiliy

Centralized database
server which runs 5511

server and receives log
? file. A cron process then
extracts data and logs it

inte databasze. The server
also runs Apache web

SErVET,

A user looking at
intrusion data
collected by Snort
through weh
browser

Note that this centralized server must be running SSH server so that SCP utility is able to upload
files to this server.

As mentioned in Chapter 1, the ultimate objective of this book is to help you install Snort and to
make all of these packages work with each other. When you go through this book, you will see
how these components act with each other to build a complete working intrusion detection
system. The website for this book http://authors.phptr.com/rehman/ contains all of these
packages in the source code form. You will also find scripts on the site that are very helpful in
installing these packages on a new system with no hassle. In fact, by using the scripts on the site
as discussed in this book, you should be able to have a working IDS by just using a few
commands as the root user. If you use a version newer than that discussed in this book, the latest
versions of the scripts that support new Snort versions can be downloaded from
http://www.argusnetsec.com/downloads.

This books details the installation of these components on a RedHat Linux version 7.3 machine.
But the process is similar on other platforms and other versions of RedHat Linux. All

components are installed under /opt directory for the purpose of this book. However, when a pre-
compiled package is used, the location of files may be different. When you use the scripts in the
book or from the website, files will be installed under this directory. In this chapter, you will

learn how to install Snort as a standalone product. Later chapters will focus on other components.

25

Snort is available in both source code and binary forms. Pre-compiled binary packages are fine
for most installations. As mentioned earlier, if you want to add or remove certain features of
Snort, you need to download the source code version and then compile it yourself. For example,
someone may be interested in SMB alerts while another may consider it unsecure. If you want to
build Snort without support for SMB alerts, you may want to build it yourself. The same is true
of other features like SNMP traps, MySQL and so on. Another reason to compile the source code
yourself may be when a new version is released but binaries are not yet available. You may also
need to compile the Snort package if you take a snapshot of the code under development. This
chapter will provide a step-by-step guide to installing Snort.

The basic installation procedure is simple because you have plenty of predefined rules available
with Snort that cover most of the known intrusion signatures. However, customization of your
installation may require a lot of work.

Version 1.9.0 is used in this chapter, but the installation procedure is similar for other versions of
the software. After installation, basic information for getting started with Snort is also provided,

including basic Snort concepts, logging and alerting and some information about Snort modes of
operation.

2.2 Installing Snort

In this section you will learn how to install precompiled version of Snort as well as how to
compile and install it by yourself. Installation of the pre-compiled RPM package is very easy and
requires only a few steps. However if you get Snort in source code format, the installation
process may take some time and understanding.

2.2.1 Installing Snort from the RPM Package
The installation procedure of Snort from the RPM package involves the following steps.
2.2.1.1 Download

Download the latest version from Snort web site (http://www.snort.org). At the time of writing
this book, the latest binary file is snort-1.9.0-1snort.i386.rpm.

2.2.1.2 Install

Run the following command to install Snort binaries:

rpm —--install snort-1.9.0-1snort.i386.rpm
This command will perform the following actions:

o Create a directory /etc/snort where all Snort rule files and configuration files are stored.
o Create a directory /var/log/snort where Snort log files will be stored.

26

o Create a directory /usr/share/doc/snort-1.9.0 and store Snort documentation files in that
directory. You will see files like FAQ (Frequently Asked Questions), README and
other files in this directory.

o Create a file snort-plain in /usr/sbin directory. This is the Snort daemon.

o Create a file /etc/rc.d/init.d/snortd file which is startup and shutdown script. On RedHat
Linux, this is equivalent to /etc/init.d/snortd.

Basic installation is complete at this point and you can start using Snort. The version of Snort
installed this way is not compiled with database support, so you can use it only for logging to
files in the /var/log/snort directory.

2.2.1.3 Starting, Stopping and Restarting Snort

To run Snort manually, use the following command:

/etc/init.d/snortd start

This command will start Snort and you can run the Snort daemon using the "ps —ef" command.
You should see a line like the following in the output of this command:

[View full width]

root 15999 1 0 18:31 ? 00:00:01 Zusr/sbin/snort -A fast -b -I
/var/log
/snort -d -D -i ethO -c /etc/snort/snort.conf

Note that you have to start Snort manually each time you reboot the machine. You can automate
this process by creating links to this file, which will be explained later in this chapter.

To stop Snort, use the following command:

/etc/init.d/snortd stop

To restart Snort, use this command:

/etc/init.d/snortd restart
2.2.2 Installing Snort from Source Code

To install Snort from the source code, you have to build it first. You can build the executable
snort file using the procedure explained in this section. First, download the latest version of
Snort from its web site (http://www.snort.org/). Just look for the "download™ link and grab the
latest version of the software. At the time of writing this book, the latest version was 1.9.0. The
downloadable file name is snort-1.9.0.tar .gz, which can be saved in the /opt directory on the
Linux box. Note that the installation method is similar for other versions which may be available
by the time you read this book.

NOTE

27

You must have libpcap installed on your UNIX machine or WinPcap if you are using Microsoft
Windows. You can get WinPcap from http://winpcap.polito.it/. Libpcap is available from
http://www-nrg.ee.lbl.gov/.

2.2.2.1 Unpacking

The first step after downloading is unpacking the source code. Use the following command to
unpack it:

tar zxvf snort-1.9.0.tar.gz

This will create a directory /opt/snort-1.9.0, assuming that you have downloaded the file in /opt
directory and have run the tar command in this directory. In case of other versions of Snort, the
directory name will be different and will reflect the version number. After unpacking you can see
the directory tree created by the tar command using the tree command. The following is a
snapshot of directories present under /opt/snort-1.9.0 directory.

[root@conformix opt]# tree -d snort-1.9.0
snort-1.9.0

|-- contrib

| -- doc

|-- etc

|-- rules

|-- src

| -- detection-plugins

| -- output-plugins

I

I

| |-- preprocessors

| T-- win32

| |-- WIN32-Code

| |-- WIN32-Includes
I | |-- NET

| | 1-- NETINET

| | |-- libnet

| I |- mysql

I | --rpc

| |-- WIN32-Libraries
| | |-- libnet

| | - mysql

| S —— WIN32-Prj

“-- templates

21 directories
[root@conformix opt]#

A brief list of the contents of these directories is listed below:

e The contrib directory contains utilities which are not strictly part of Snort itself. These
utilities include ACID, MySQL database creation scripts and other things.

28

e The doc directory contains documentation files, as is evident from the name of the
directory.

e The etc directory contains configuration files.

e The rules directory contains predefined rule files.

o All source code is present under the src directory.

e The templates directory is useful only for people who want to write their own plug-ins.
It has no significance for general Snort users.

2.2.2.2 Compiling and Installation
The compilation and installation process consists of three steps as listed below:

1. Running the configure script.
2. Running the make command.
3. Running the make install command.

To start the compilation process of Snort, go to Zopt/snort-1.9.0 directory and run the
configure script. If you are new to GNU style software, the configure script is a common
utility with open source packages. It is used to set some parameters, create makefiles, and detect
development tools and libraries available on your system. Many command line options can be
used with the configure script. These options determine which Snort components will be
compiled with Snort. For example, using these options, you can build support of SNMP, MySQL
or SMB alerts, in addition to many other things. You can also determine the directory in which
the final Snort files will be installed. Available command line options with the configure script
can be listed using the "./configure —help" command as shown below:

[root@conformix snort-1.9.0]# ./configure --help
Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]

Configuration:
—--cache-fTile=FILE cache test results in FILE
--help print this message
--no-create do not create output files
-—quiet, --silent do not print “checking..." messages
--version print the version of autoconf that

created configure
Directory and file names:

--prefix=PREFIX install architecture-independent
files in PREFIX
[Z/usr/local]

--exec-prefix=EPREFIX install architecture-dependent
files in EPREFIX
[same as prefix]

--bindir=DIR user executables in DIR
[EPREFIX/bin]

--sbindir=DIR system admin executables in DIR
[EPREFIX/sbin]

--libexecdir=DIR program executables in DIR
[EPREFIX/1ibexec]

-—datadir=DIR read-only architecture-independent
data in DIR

29

--sysconfdir=DIR

--sharedstatedir=DIR

--localstatedir=DIR
—-libdir=DIR
—--includedir=DIR
--oldincludedir=DIR
—--infodir=DIR
--mandir=DIR
--srcdir=DIR
—-—program-prefix=PREFIX

—-—program-suffix=SUFFIX

[PREFIX/share]

read-only single-machine data in

DIR [PREFIX/etc]

modifiable architecture-independent

data in DIR

[PREFI1X/com]

modifiable single-machine data in

DIR [PREFIX/var]

object code libraries in DIR
[EPREFIX/1ib]

C header files in DIR
[PREFIX/include]

C header files for non-gcc in DIR
[/usr/include]

info documentation in DIR
[PREFIX/info]

man documentation in DIR
[PREFIX/man]

find the sources in DIR

[configure dir or ..]

prepend PREFIX to installed program
names

append SUFFIX to installed program
names

--program-transftorm-name=PROGRAM

Host type:
—--build=BUILD

--host=HOST

--target=TARGET
Features and packages:

--disable-FEATURE

—-—enable-FEATURE[=ARG]
—--with-PACKAGE[=ARG]
--without-PACKAGE

—--x-includes=DIR
—--x-libraries=DIR

run sed PROGRAM on installed
program names

configure for building on BUILD
[BUILD=HOST]

configure for HOST [guessed]
configure for TARGET [TARGET=HOST]

do not include FEATURE (same as
--enable-FEATURE=nO)

include FEATURE [ARG=yes]

use PACKAGE [ARG=yes]

do not use PACKAGE (same as
—--with-PACKAGE=n0)

X include files are in DIR

X library files are in DIR

--enable and --with options recognized:

--enable-debug

--enable-profile

enable debugging options
(bugreports and developers only)
enable profiling options
(developers only)

—--with-libpcap-includes=DIR [libcap include directory
—--with-libpcap-libraries=DIR libcap library directory

--with-mysql=DIR
--with-odbc=DIR
—--with-postgresql=DIR
—--with-oracle=DIR
——-with-snmp
--with-openssI=DIR
--enable-sourcefire

--enable-perfmonitor

support for mysql
support for odbc
support for postgresql
support for oracle
support for snmp
support for openssl
Enable Sourcefire specific build
options
Enable perfmonitor preprocessor

30

--enable-smbalerts SMB alerting capaility via Samba
--enable-flexresp Flexible Responses on hostile
connection attempts
[root@conformix snort-1.9._0]#

Options values listed in square brackets indicate that if that particular option is not selected, the
value mentioned in the square bracket will be used by default. For example, the following three
lines show that if the with-prefix option is not used on the command line for the configure
script, Zusr/l1ocal value will be used as PREFIX by default. Note that PREFIX is the directory
under which Snort files are installed when you use the "make install’ command.

—-—prefix=PREFIX install architecture-independent
files in PREFIX
[Z/usr/local]

A typical session with the configure scripts may be as follows. Output is truncated after
displaying the initial output line to save space. Note the options that have been enabled on the
command line.

[View full width]

[root@conformix snort-1.9.0]# ./configure --prefix=/opt/snort --enable-
smbalerts

--enable-flexresp --with-mysql --with-snmp --with-openssl

loading cache ./config.cache

checking for a BSD compatible install... (cached) /usr/bin/install -c
checking whether build environment iIs sane... yes

checking whether make sets ${MAKE}... (cached) yes

checking for working aclocal... found

checking for working autoconf... found

checking for working automake... found

checking for working autoheader... found

checking for working makeinfo... found

checking for gcc... (cached) gcc

checking whether the C compiler (gcc) works... yes

checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... (cached) yes

checking whether gcc accepts -g... (cached) yes

checking for gcc option to accept ANSI C... (cached) none needed
checking for ranlib... (cached) ranlib

Output is truncated at the end because the configure script may create a lot of information. The
prefix option on the command line is used to tell the configure script the location of final
installation directory. Other options are used to enable the following components of Snort:

e Support of MySQL database.

e Support of SNMP traps.

e Support of SMB alerts. SMB alerts are used to send pop-up windows to Microsoft
Windows machines.

o Enable support of flex response. Flex response is used to terminate network sessions in
real time. More information about flex response will be provided in the following

31

chapters. Note that to enable support of this option, you must have libnet installed. You
can download libnet from http://www.securityfocus.net. | have used version 1.0.2a for
this installation.

© The installation procedure for libnet is found in the accompanying README file. Basically it consists of four steps:

Untar the file using tar zxvf libnet-1.0.2a.tar.gz

Change to directory Libnet-1.0.2a and run the ./configure command.
Run make command.

Run make install command.

O0O0O0

After running the configure script, you can run the following two commands to compile and
install Snort files.

make
make install

The first command may take some time to complete depending upon how powerful your
machine is. When you run the second command, files are installed in the appropriate directories.
The make install command installs Snort binaries in Zopt/snort directory as you selected --
prefix=/opt/snort on the command line for the configure script.

Useful command line parameters that can be used with the configure script are shown in Table
2-1

Table 2-1. Command line parameters used with configure scripts

Parameter Description
--with-mysql Build support of MySQL with Snort.

--with-snmp Build support of SNMP while compiling Snort. You have to use —with-openssl|
if you use this option.

--with- Enable OpenSSL support. You may need to use this when you use SNMP
openssl option.

--with-oracle Enable support for Oracle database.
--with-odbc Buyild support for ODBC in Snort.

--enable- Enables use of Flex Response which allows canceling hostile connections.

Tlexresp This is still experimental (see README.FLEXRESP file in Snort
distribution).

--enable- Enable SMB alerts. Be careful using this as this invokes smbclient user space

smbalerts

process every time it sends an alert.
--prefix=DIR Set directory for installing Snort files.

You can also run the "make check" command before running the "make install” command to
make sure that Snort is built properly.

32

After installing, run Snort to see if the executable file is working. Using the above mentioned
procedure, Snort binary is installed in the Zopt/snort/bin directory. The following command
just displays the basic help message of the newly built snort and command line options.

[root@conformix snort]# /opt/snort/bin/snort -?
Initializing Output Plugins!

-*> Snort! <*-

Version 1.9.0 (Build 209)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

USAGE: /opt/snort/bin/snort [-options] <filter options>

Options:

-A Set alert mode: fast, full, console,

or none (alert file alerts only)
"unsock™ enables UNIX socket logging

(experimental).

-a Display ARP packets

-b Log packets in tcpdump format (much
faster!)

-c <rules> Use Rules File <rules>

-C Print out payloads with character data
only (no hex)

-d Dump the Application Layer

-D Run Snort in background (daemon) mode

-e Display the second layer header info

-f Turn off fflush() calls after binary log
writes

-F <bpf> Read BPF filters from file <bpf>

-g <gname> Run snort gid as <gname> group (or gid)
after initialization

-G <mode> Add reference ids back into alert msgs
(modes: basic, url)

-h <hn> Home network = <hn>
-1 <if> Listen on interface <if>
-1 Add Interface name to alert output

-1 <ld> Log to directory <ld>

-m <umask> Set umask = <umask>

-M <wrkst> Sends SMB message to workstations in file
<wrkst>
(Requires smbclient to be in PATH)

-n <cnt> Exit after receiving <cnt> packets

-N Turn off logging (alerts still work)

-0 Change the rule testing order to
Pass|Alert]Log

-0 Obfuscate the logged IP addresses

-p Disable promiscuous mode sniffing

-P <snap> set explicit snaplen of packet
(default: 1514)

-q Quiet. Don"t show banner and status report

-r <tf> Read and process tcpdump file <tf>

-R <id> Include "id" in snort_intf<id>.pid file
name

-s Log alert messages to syslog

-S <n=v> Set rules file variable n equal to value v
-t <dir> Chroots process to <dir> after
initialization

33

=T Test and report on the current Snort
configuration

-u <uname> Run snort uid as <uname> user (or uid)
after initialization

-U Use UTC for timestamps

-V Be verbose

-V Show version number

-w Dump 802.11 management and control frames

-X Dump the raw packet data starting at the
link layer

-y Include year in timestamp in the alert and
log Tiles

-z Set assurance mode, match on established
sesions (for TCP)

-7? Show this information

<Filter Options> are standard BPF options, as seen in TCPDump
[root@conformix snort]#

If you see this message, you have built Snort properly. In the next section, you will learn how to
configure and run Snort.

2.2.2.3 After Installation Processes

Now that you have built Snort binary, you have to do few things before you can start using Snort.
These include:

1. Create directory /var/log/snort where Snort creates log files by default.

2. Create a directory to save configuration files. | have created /opt/snort/etc. You can

create a directory of your own.

Create or copy the Snort configuration file in Zopt/snort/etc directory.

4. Create a directory /opt/snort/rules and copy default rule files to Zopt/snort/etc
directory. The path of this directory is mentioned in the main snort.conf file and you
can create a directory of your own choice if you like.

w

The steps are explained below in detail.

First, create a directory /var/log/snort where Snort will keep its log files. You can use any
other directory for this purpose but this is the usual place to store Snort log data files. If you want
to use any other directory, you have to use command line option -1 when starting Snort.

Secondly, you have to create the Snort configuration file. When Snort starts, it can read its
configuration, which is snort.conf, from the current directory or from .snortrc in the home
directory of the user who launched Snort. If this file is present in some other directory, you can
also use the -c option on the command line to specify the name of the rules file. As a starting
point, create a directory Zopt/snort/etc directory and copy the snort.conf file that came with
the Snort source code files. Copy classification.config and reference.config files to
/opt/snort/etc directory. These files are included in the main snort.conf file. Also copy all
files from the rules directory of the source code tree to Zopt/snort/rules directory. To perform
these actions, you can use the following sequence of commands:®

34

BJ Note that you must have root access to run these commands.

mkdir /Zopt/snort/etc

cp /opt/snort-1.9.0/etc/snort.conf /opt/snort/etc

cp /opt/snort-1.9.0/etc/classification.config /opt/snort/etc
cp /opt/snort-1.9.0/etc/reference.config /opt/snort/etc
mkdir Zopt/snort/rules

cp /opt/snort-1.9.0/rules/* /opt/snort/rules

Files in the rules directory end with _rulles and contain different rules. These files are included
inside the snort.conf file. The location of these rule files is controlled by the RULE_PATH
variable defined in snort.conf file. A typical definition of this variable in the snort. conf file
is as follows:

var RULE_PATH ../rules

This means that rule files are located in a directory named "rules”. The path . ./rules is with
reference to the location of snort.conf file. For example, if snort.conf file is located in the
/opt/snort/etc directory, all rule files should be present in the Zopt/snort/rules directory.
As another example, if snort.conf file is present in the /var/snort directory, rules files must
be present in the /var/rules directory. You can keep all rule files and snort.conf file in the
same directory if you set the value of this variable to ./ instead of . . /rules in the snort.conf
file using the following line:

var RULE_PATH ./

More information about Snort rules is found in the next chapter where you will learn how to
define your own rules as well.

The classification.config file contains information about Snort rules classification and
more information about this file is found in the next chapter. Note that /opt/snort-1.9.0 is the
directory where all Snort source code files are present. If you are using a different version of
Snort, the directory name will be different.

The reference.config file lists URLS for different reference web sites where more information
can be found for alerts. These references are used in Snort rules and you will learn more about
references in the next chapter. A typical reference.config file is like the following:

$1d: reference.config,v 1.3 2002/08/28 14:19:15 chrisgreen Exp $
The following defines URLs for the references found in the rules
#

config reference: system URL

config reference: bugtraq http://www.securityfocus.com/bid/
config reference: cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=
config reference: arachNIDS http://www.whitehats.com/info/I1DS

Note, this one needs a suffix as well.... lets add that in a bit.
config reference: McAfee http://vil _nai.com/vil/content/v_
config reference: nessus http://cgi .nessus.org/plugins/dump.php3?id=

35

config reference: url http://

Note that both classification.config and reference.config files are included in the main
snort.conf file.

NOTE

If you used the RPM package, all configuration files are already present in the /etc/snort
directory and you don't need to take the above mentioned actions.

Now you can start Snort using the following command. The command displays startup messages
and then starts listening to interface etho. Note the command line option where snort.conf is
specified with its full path. I would recommend always using the full path for snort.conf on the
command line to avoid any confusion.

[root@conformix snort]# /opt/snort/bin/snort -c /opt/snort/etc/snort.conf
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface ethO

--== Initializing Snort ==--
Decoding Ethernet on interface ethO
Initializing Preprocessors!

Initializing Plug-ins!
Parsing Rules file /opt/snort/etc/snort.conf

T o e L o
Initializing rule chains...
No arguments to frag2 directive, setting defaults to:
Fragment timeout: 60 seconds
Fragment memory cap: 4194304 bytes
Fragment min_ttl: 0
Fragment ttl_limit: 5
Fragment Problems: O
Stream4 config:
Stateful inspection: ACTIVE
Session statistics: INACTIVE
Session timeout: 30 seconds
Session memory cap: 8388608 bytes
State alerts: INACTIVE
Evasion alerts: INACTIVE
Scan alerts: ACTIVE
Log Flushed Streams: INACTIVE
MINTTL: 1
TTL Limit: 5
Async Link: O
No arguments to stream4 _reassemble, setting defaults:
Reassemble client: ACTIVE
Reassemble server: INACTIVE
Reassemble ports: 21 23 25 53 80 143 110 111 513

36

Reassembly alerts: ACTIVE
Reassembly method: FAVOR_OLD
http_decode arguments:
Unicode decoding
11S alternate Unicode decoding
11S double encoding vuln
Flip backslash to slash
Include additional whitespace separators
Ports to decode http on: 80
rpc_decode arguments:
Ports to decode RPC on: 111 32771
telnet_decode arguments:
Ports to decode telnet on: 21 23 25 119
Conversation Config:
KeepStats: 0O
Conv Count: 32000
Timeout : 60
Alert 0dd?: O
Allowed 1P Protocols: All

Portscan2 config:
log: /var/log/snort/scan.log
scanners_max: 3200
targets_max: 5000
target_limit: 5
port_limit: 20
timeout: 60
1273 Snort rules read...
1273 Option Chains linked into 133 Chain Headers

O Dynamic rules
++++++++++H

Rule application order: ->activation->dynamic->alert->pass->log
--== Initialization Complete ==--

-*> Snort! <*-
Version 1.9.0 (Build 209)
By Martin Roesch (roesch@sourcefire.com, www.snort.org)

As you can see from the previous output, Snort has started listening to interface etho. If any
packet matches the rules, Snort will take appropriate action according to that rule and will
generate alerts. Alerts may be generated in different forms. Alerts that you will see with this
basic setup are logged in /var/log/snort/alerts file. Later on you will see how to generate
alerts in other forms and log them to a database. You will also learn about the format of the alert
data files generated by Snort later.

You can terminate the Snort session any time by pressing the Ctrl and C keys simultaneously.
At this point, Snort will display a summary of its activity and then quit. A typical summary is as
follows:

Snort analyzed 65 out of 65 packets, dropping 0(0.000%) packets

37

Breakdown by protocol: Action Stats:

TCP: 55 (84.615%) ALERTS: 10

UDP: 10 (15.385%) LOGGED: 10

ICMP: 0 (0.000%) PASSED: 0
ARP: 0 (0.000%)
EAPOL: O (0.000%)
IPv6: 0 (0.000%)
IPX: 0O (0.000%)
OTHER: 0 (0.000%)
DISCARD: O (0.000%)

Wireless Stats:
Breakdown by type:

Management Packets: O (0.000%)
Control Packets: 0 (0.000%)
Data Packets: 0 (0.000%)

Fragmentation Stats:
Fragmented IP Packets: 0O (0.000%)
Fragment Trackers: O
Rebuilt IP Packets: 0O
Frag elements used: O
Discarded(incomplete): 0O
Discarded(timeout): O
Frag2 memory faults: O

TCP Stream Reassembly Stats:
TCP Packets Used: 55 (84.615%)

Stream Trackers: 1

Stream flushes: 0

Segments used: 0O

Stream4 Memory Faults: O

Snort received signal 2, exiting
[root@conformix snort]#

The above mentioned procedure runs Snort in the foreground and you don't get the command
prompt back. To run Snort in the background, you can use the -D command line switch. In this
case Snort still logs all of its information in the log directory /var/log/snort and you get the
command prompt back. Note that when you installed Snort using the pre-compiled RPM package
as explained earlier, you can run Snort using the "/etc/init.d/snortd start” command that
starts Snort in the background.

2.2.3 Errors While Starting Snort

At this point, if you have compiled Snort by yourself, you may see the following error when
starting Snort:

[!] ERROR: Cannot get write access to logging directory "/var/log/snort".
(directory doesn™t exist or permissions are set incorrectly
or It is not a directory at all)

Fatal Error, Quitting..

38

This error is due to the fact that you have not created the /var/log/snort directory. Use the
"mkdir /var/log/snort"” command and the error will go away.

If you get an error message like the following, you have not specified the Snort configuration file
name correctly on the command line or you started Snort without specifying a configuration file
name.

Initializing rule chains...
ERROR: Unable to open rules file: /root/.snortrc or /root//root/.snortrc
Fatal Error, Quitting..

Note that you can run Snort without specifying a configuration file name if one of the following
conditions is true:

1. You are in the same directory where the configuration file exists when you start Snort.
2. You have copied the configuration file in your home directory as .snortrc.

2.2.4 Testing Snort

After starting Snort, you need to know if it is actually capturing data and logging intruder
activity. If you started Snort in the foreground with the "-A console" command line option, you
will start seeing alerts on the screen when this script is running. However, if you have started
Snort in the daemon mode and did not use the command line option mentioned above, alerts will
be logged to the /var/log/snort/alert file.

The following command generates some alerts that you can see on the console or in the
/var/log/snort/alert file. Generation of alerts indicates that Snort is working properly.

ping -n -r -b 255.255.255.255 -p "7569643d3028726T6T74290a" -c3

Alerts displayed on screen will look like the following. Again note that to display alerts on
screen, you have to use the "—A console™ command line option.

[View full width]

11/19-18:51:04.560952 [**] [1:498:3] ATTACK RESPONSES id check returned root
1

[Classification: Potentially Bad Traffic] [Priority: 2] {ICMP} 10.100.1.105
-> 255.255.255.255

2.2.4.1 Generating Test Alerts

The following script name is snort-test.sh and it is available on the website
(http://authors.phptr.com/rehman/) that accompanies the book. Basically it uses the same
command as mentioned above but is useful when Snort is running in the daemon mode.

1 #1/bin/sh
2 #
3 HHHH

39

You are free to copy and distribute this script under
GNU Public License until this part is not removed
from the script.

HHHH

#
#
#

4
5
6
7
8 # HOW TO USE #
9 # #
10 # Right after installation of Snort, run this script. #
11 # 1t will generate alerts in /var/log/snort/alert file similar#
12 # to the following: #
13 # #
14 # Note that Snhort must be running at the time you run this #
15 # script. #
16 # #
17 # [**] [1:498:3] ATTACK RESPONSES id check returned root [**] #
18 # [Classification: Potentially Bad Traffic] [Priority: 2] #
19 # 08/31-15:56:48.188882 255.255.255.255 -> 192.168.1.111 #
20 # ICMP TTL:150 TOS:0x0O ID:0 IpLen:20 DgmLen:84 #
21 # Type:0 Code:0 1D:45596 Seq:1024 ECHO REPLY #
22 # #
23 # These alerts are displayed at the end of the script. #
Tl L L L L L L
25 #
26 clear
27 echo

A
28 echo "# Script to test Snort Installation

Ho
29 echo "# Written By

o
30 echo "#

Ho
31 echo "# Rafeeq Rehman

o
32 echo "# rr@argusnetsec.com

o
33 echo "# Argus Network Security Services Inc.

Ho
34 echo "# http://www._argusnetsec.com

o
35 echo

L L P P L L L R L
36 echo
37
38 echo
39 echo

L L S L L L
40 echo "The script generates three alerts in file /var/log/snort/alert”
41 echo "Each alert should start with message like the following:™
42 echo
43 echo ™ \"ATTACK RESPONSES id check returned root\" "
44 echo

VI
45 echo
46 echo "Enter IP address of any other host on this network. If you"
47 echo "don"t know any IP address, just hit Enter key. By default"
48 echo -n "broacast packets are used [255.255.255.255] :@ "
49

40

read ADDRESS

if [-z $ADDRESS]

ADDRESS="'255_255_255_255"

echo "Now generating alerts. If it takes more than 5 seconds, break™
echo "the script by pressing CtrI-C. Probably you entered wrong IP"
echo "address. Run the script again and don"t enter any IP address"

0.3 -n -r -b $ADDRESS -p "7569643d3028726F6f74290a" -c3

-ne 0]

"Alerting generation failed.”

"Aborting ...
1

"Alert generation complete

50

51

52

53 then

54

55 Fi

56

57 echo

58

59

60

61

62 ping -i
2>/dev/null >/dev/null

63

64 if [$?

65 then

66 echo

67 echo

68 exit

69 else

70 echo

71 echo

72 echo

73 Fi

74

75 sleep 2

76

77

78 echo

79 echo

VR S S R S A A
80 echo "Last 18 lines of /var/log/snort/alert file will be displayed

now

81 echo "If snort is working properly, you will see recently generated"
82 echo "alerts with current time"

83

echo

R R T T T R e e e

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

echo

echo "Hit Enter key to continue ...

read ENTER

if [' - /var/log/snort/alert]

then
echo
echo
exit
fi

"The log file does not exist."
"Aborting ..."
1

tail -n18 /var/log/snort/alert

echo

echo "'Done"

echo

41

This script generates alerts which you can see in the /var/log/snort/alert file (if running in
daemon mode) or on the screen where Snort is running. Alerts are generated by sending ICMP
echo packets with a predefined pattern in the data part. The echo command is used for this
purpose. This pattern triggers the following Snort rule, generating an alert.

[View full width]

alert ip any any -> any any (msg:"ATTACK RESPONSES id check returned root";
content:
"uid=0(root)"; classtype:bad-unknown; sid:498; rev:3;)

After generating alerts, the script will display the last eighteen lines of the
/var/log/snort/alert file.

Now let us examine different parts of this script and how it works. Lines 52 to 55 prompt a user
to enter an address to which ping packets should be sent. If no address is entered, a broadcast
address (255.255.255.255) is assumed and ping packets are sent as broadcast packets.

Line 62 actually generates the ICMP packets that cause the rule to be triggered. Note that pattern
"'7569643d3028726F6F74290a" is equal to "uid=0(root)" which is the pattern required to
generate alerts.

The -c3 command line parameter causes three packets to be sent. Note that standard input and
standard error are redirected to /dev/nul I to make sure that no messages are displayed on the
screen. For a detail of all options used with the ping command, see its man pages using the "man
ping" command.

Lines 64 to 73 check the result of the ping command. A message is displayed indicating the
success or failure of the ping command. If the command fails, the script aborts at this point and
no further processing is done.

If alerts are to be generated successfully, they must be present in the /var/log/snort/alert
file. Lines 88 to 93 verify that the file exists. If the file does not exist, the script is aborted.

If all goes well, line 95 shows output of alerts generated by displaying the last eighteen lines in
the /var/log/snort/alert file.

2.2.4.2 Generating Test Alerts with Automatic Snort Startup

If you installed Snort in the Zopt/snort directory, you can also use the following script that will
start and stop Snort by itself and verify that it is working properly. Make sure that Snort is NOT
already running before starting this script because the script starts Snort by itself. This script is
found as snort-test-auto.sh file on the website http://authors.phptr.com/rehman/.

1 #'/bin/sh

2 #
3 B R R T R R R R R R R R
4 # You are free to copy and distribute this script under #

42

46

GNU Public License until this part is not removed

from the script.

#
#

T A T A A T T B T R A T

HFHRHFHHFHHFHHFHFHHFHHFHE IS

of variables.

HOW TO USE

Right after installation of Snort, run this script.
It is assumed that snort executable is present in the
/opt/argus/bin directory and all rules and configuration
files are present under /opt/argus/etc/snort directory.
IT files are in other locations, edit the following location#
IT you used the installation script provided #
along with this script, the files will be automatically
located in appropriate directories.

Note that the script starts and stops Snort by itself and
you should make sure that Snort is not running at the time
you run this script.

It will generate alerts in /tmp/alert file similar
to the following:

[**]1 [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/31-15:56:48.188882 255.255.255.255 -> 192.168.1.111
ICMP TTL:150 TOS:0xO ID:0 IpLen:20 DgmLen:84

Type:0 Code:0

ID:45596 Seq:1024 ECHO REPLY

These alerts are displayed at the end of the script.

HFHHFHHFH

3+

#
#
#
#
#
#
#
#
#
#
#
#
"
#
#
7

T R T T T T A A T

#

PREFIX=/opt/snort

SNORT=$PREFIX/bin/snort
SNORT_CONFIG=$PREFIX/etc/snort.conf

LOG_DIR=/tmp

ALERT_FILE=$LOG_DIR/alert
ALERT_FILE_OLD=$LOG_DIR/alert.old
ADDRESS="'255. 255 . 255 . 255"

clear

echo

R R A T T R e e e o

#Il

#

#Il

#

#r

#Il

#

47

48

49

50

51

52

53

echo

echo

echo

echo

echo

echo

echo

“H

“H#

“H#

Il#

“H

Il#

H#

Script to test Snort Installation

Written By

Rafeeq Rehman
rr@argusnetsec.com
Argus Network Security Services Inc.

http://www.argusnetsec.com

43

54 echo
VR R S R e e
55 echo
56
57 echo
58 echo
VR T R S A e
59 echo "The script generates three alerts in file /tmp/alert”
60 echo "Each alert should start with message like the following:"

61 echo
62 echo " \"ATTACK RESPONSES id check returned root\" "
63 echo
VHAHHH R
64 echo
65
66 if [! -d $LOG_DIR]
67 then
68 echo "Creating log directory ..."
69 mkdir $LOG_DIR
70
71 if [$? -ne 0]
72 then
73 echo "Directory $LOGDIR creation failed"
74 echo "Aborting ..."
75 exit 1
76 Ti
77 i
78
79 if [-T $ALERT_FILE]
80 then
81 mv -f $ALERT_FILE $ALERT_FILE_OLD
82
83 if [$? -ne 0]
84 then
85 echo "Can"t rename old alerts file."
86 echo "Aborting ..."
87 exit 1
88 fi
89 fi
90
91 if [! -F $SNORT]
92 then
93 echo "Snort executable File $SNORT does not exist."
94 echo "Aborting ..."
95 exit 1
96 fi
97
98 if [! -T $SNORT_CONFIG]
99 then
100 echo ""Snort configuration file $SNORT _CONFIG does not exist.
101 echo "Aborting ..."
102 exit 1
103 fi
104
105 if [! -x $SNORT]
106 then

107 echo ""Snort file $SNORT is not executable.™

echo "'Starting Snort ...

"Aborting ...
1

c $SNORT_CONFIG -D -1 /tmp 2>/dev/null
-ne 0]
"Snort startup failed.”

"Aborting ...
1

echo "Now generating alerts."

tail -n18 $ALERT_FILE 2>/dev/null | grep "ATTACK RESPONSES id

echo "Stopping Snort ...

0.3 -n -r -b $ADDRESS -p "7569643d3028726F6F74290a""

-ne 0]

"Alerting generation failed.”
"Aborting ...
1

"Alert generation complete

-ne 0]

"Snort test failed.”

"Aborting ...
1

pkill snort >/dev/null 2>&1

-ne 0]

"Snort stopping failed.”

"Aborting ...
1

108 echo

109 exit

110 Fi

111

112

113 $SNORT -

114

115 if [$?

116 then

117 echo

118 echo

119 exit

120 Fi

121

122 echo

123

124

125 ping -i
2>/dev/null >/dev/null

126

127 af [$?

128 then

129 echo

130 echo

131 exit

132 else

133 echo

134 echo

135 echo

136 Fi

137

138 sleep 2

139

140
>/dev/null

141

142 af [$?

143 then

144 echo

145 echo

146 exit

147 Fi

148

149

150

151

152 if [$?

153 then

154 echo

155 echo

156 exit

157 Fi

158

159 echo

160

161

echo ""Done. Snort installation is working properly"

echo

-c3

check"

As you may have noted, this scripts creates alert file in the /tmp directory which is used to find
out if the alert creation was successful. When you run the script and everything is working fine,
you will see the following output:

e e e e e e e e
Script to test Snort Installation
Written By

rr@argusnetsec.com
Argus Network Security Services Inc.
http://www.argusnetsec.com
e

#
#
#
Rafeeq Rehman
#
#
#

R R A
The script generates three alerts in file /tmp/alert
Each alert should start with message like the following:

""ATTACK RESPONSES id check returned root"
HHAHHH A

Starting Snort ...

Now generating alerts.
Alert generation complete
Stopping Snort ...

Done. Snort installation is working properly

This script does a number of things when you run it. First of all it sets values of some variables
using lines from line number 36 to 42.

After setting these variables, the script goes through the following steps:

e Lines 66 to 77 are used to check for the presence of $LOG_DIR directory. The variable
LOG_DIR defined in line 39 shows that this directory is /tmp. If the directory does not
exist, the script creates it.

e Lines 79 to 89 are used to check for the presence of $ALERT_FILE, which is /tmp/alert.
If the file exists, the scripts renames it as /tmp/alert_old.

o Lines 91 to 96 are used to check for the presence of Snort binary file $SNORT, which is
/opt/snort/bin/snort. If the file is not present, execution is stopped.

e Lines 98 to 103 are used to check for the presence of $SNORT_CONFIG file, which is
/opt/snort/etc/snort.conf. If the file does not exist, execution is stopped.

o Lines 105 to 110 make sure that the Snort binary file is indeed executable.

e Line number 113 starts Snort.

e Lines 115 to 120 check that Snort was started successfully.

o Line 125 generates alerts as described in the previous section. These alerts are sent to
broadcast address.

46

e Lines 127 to 136 are used to make sure that the alert generation process was successful.

o Line 140 checks the last eighteen lines of the alert file to verify that alerts were generated
and log entries are created successfully.

o Lines 142 to 147 display an error message if the test in line 140 failed.

e Line 150 stops Snort.

o Line 160 displays a message showing that the test generation process was successful.

2.2.5 Running Snort on a Non-Default Interface

On Linux systems, Snort starts listening to network traffic on Ethernet interface etho. Many
people run Snort on multi-interface machines. If you want Snort to listen to some other interface,
you have to specify it on the command line using the -i option. The following command starts
Snort so that it listens to network interface ethi.

snhort -c /opt/snort/etc/snort.conf —i ethl

In case of automatic startup and shutdown as explained in the next section, you have to modify
/etc/init.d/snortd script so that Snort starts on the desired interface at boot time.

2.2.6 Automatic Startup and Shutdown

You can configure Snort to start at boot time automatically and stop when the system shuts down.
On UNIX-type machines, this can be done through a script that starts and stops Snort. The script
is usually created in the Zetc/init.d directory on Linux. A link to the startup script may be
created in /etc/rc3.d directory and shutdown links may be present in /etc/rc2.d,

/etc/rcl.d and Zetc/rc0.d directories. A typical script file /etc/init.d/snortd that is
bundled with Snort RPM is as shown below:“

1 you are creating a startup/shutdown script when you compile Snort yourself, you have to modify paths to Snort files according to your installation.
This script still works very well as a reference starting point.

[root@conformix]# cat /etc/init.d/snortd
#1/bin/sh

shortd Start/Stop the snort IDS daemon.

chkconfig: 2345 40 60
description: snort is a lightweight network intrusion
detection tool that
currently detects more than 1100 host and network
vulnerabilities, portscans, backdoors, and more.

June 10, 2000 -- Dave Wreski <dave@linuxsecurity.com>
- Initial version

July 08, 2000 Dave Wreski <dave@guardiandigital.com>
- added snort user/group
- support for 1.6.2

July 31, 2000 Wim Vandersmissen <wim@bofh.st>
- added chroot support

HFHRHFHHFHHFHFEHRHFHHFHHERH

47

Source function library.
. /etc/rc.d/init.d/functions

Specify your network interface here
INTERFACE=ethO

See how we were called.
case "$1" in
start)
echo -n "Starting snort: "
cd /var/log/snort
daemon /usr/sbin/snort -A fast -b -1 /var/log/snort \
—d -D -1 S$INTERFACE -c /etc/snort/snort.conf
touch /var/lock/subsys/snort
echo
stop)
echo -n "Stopping snort: ™
killproc snort
rm -F /var/lock/subsys/snort
echo
restart)
$0 stop
$0 start

status)
status snort
“ s
echo "Usage: $0 {start|stop]restart|status}”

exit 1
esac

exit O
[root@conformix /root]#

Note that the same file is used to start and stop Snort. The first character in the name of the link
file determines if Snort will be started or stopped in a particular run level. The startup link file
starts with the character S. A typical startup file is 7etc/rc3.d/S50snort which is actually
linked to Zetc/init.d/snortd file. Similarly, a typical shutdown script file starts with the letter
K. For example, you can create /etc/rc2.d/K50snort file. The init daemon will automatically
start Snort when the system moves to run level 3 and will stop it when the system goes to run
level 2.

You can start and stop Snort using the script manually as well. The following two lines start and
stop Snort respectively.

/etc/init.d/snortd start
/etc/init.d/snortd stop

48

Note that the script and its links in the appropriate directories may have different names. Names
for links to the script entirely depend upon at what point during the startup/shutdown process you
want to start and stop Snort. If you used an RPM file, these links will be created during the
installation procedure of the RPM package.

2.3 Running Snort on Multiple Network Interfaces

When you start Snort, it listens to traffic on one interface. Using the command line option —i
<interface_name>, you can specify the interface on which you want to run it. If you want to
listen to multiple network interfaces, you have to run multiple copies of Snort in parallel. As an
example, the following two commands start listening to network interfaces etho and eth1 on a
Linux machine.

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -i ethO -1 /var/log/snortO
/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -i ethl -1 /var/log/snortl

Note that you have created two log directories, /var/log/snort0 and /var/log/snortl, SO
that both of the Snort sessions keep their log files separate. These directories must exist before
you start Snort.

If both sessions log to a MySQL database, which is configured through snort.conf file, the
same database can be used.

Note that you can also have different configuration files for these two sessions. There may be
many reasons for having separate configuration files. The main reason is that
HOME_NETWORK is different for the two sessions. Another reason may be that you want to
log alert data in log files for one interface and in a database for the second interface. This is

shown in Figure 2-2.

Figure 2-2. Running Snort on multiple network interfaces and logging to different
places.

49

Snort Sensor
with multiple
interface and
multiple
copies of snort

Sensor running
on Ethernet
ethl is logging
to MyS0L
database

Sensor mnning on
Ethernet ethiy is
logeing to fvardlog/
snort directory

2.4 Snort Command Line Options

Snort has many command line options that are very useful for starting Snort in different
situations. As you have already seen, command line options are helpful in running multiple
versions of Snort on the same system. You can use "snort -?" command to display command
line options. Most commonly used and useful command line options are listed in Table 2-2.

Table 2-2. Snort command line options

Options Description

-A This options sets alert mode. Alert modes are used to set different levels of detail with
the alert data. Options available are fast, full, console or none. You have already seen
that the console mode is used to display alert data on the console screen instead of
logging to files. The fast mode is useful for high-speed operations of Snort.

-b This option is used to log packets in tcpdump format. Logging is very fast and you can
use the tcpdump program later on to display the data.

-C This is the most commonly used option. You specify the location of snort.conf file
with this option. When specified, Snort does not look into default locations of the
configuration file snort.conf. As an example, if the snort.conf file is present in Zetc
directory, you will use "-c /etc/snort.conf" on the command line while starting

Snort.

-D This option enables Snort to run in the background. In almost all implementations of
Snort, this option is used. You don't use this option when you are testing Snort after
installation.

-i This option is used to start Snort so that it listens to a particular network interface. This

50

Table 2-2. Snort command line options

Options Description

option is very useful when you have multiple network adapters and want to listen to
only one of them. It is also useful when you want to run multiple Snort sessions on
multiple network interfaces. For example, if you want Snort to listen to network
interface eth1 only, you will use "-i eth1" on the command line while starting Snort.

-l This option is used to set the directory where Snort logs messages. The default location
is /7var/log/snort. For example, if you want all log files to be generated under /snort
directory, you will use "-1 /snort" command line option.

-M You have to specify a text file as argument to this option. The text file contains a list of
Microsoft Windows hosts to which you want to send SMB pop-up windows. Each line
should contain only one IP address. Note that you can achieve the same goal through
snort.conf file as well, which will be explained later.

-T This option is very useful for testing and reporting on the Snort configuration. You can
use this option to find any errors in the configuration files.

There are many other options which are less frequently used. These options will be discussed in
related sections later on. The functionality of some command line options can be achieved
through snort.conf file as well.

2.5 Step-By-Step Procedure to Compile and Install
Snort From Source Code

Installing Snort from the RPM package is very easy since you have to use only one command,
"rpm -install <snort_file_name.rpm>". However, as you have seen, installing from the
source code requires much more work. To summarize the process of installing from the source
code, here is a step-by-step procedure:

o Download source code file from http://www.snort.org.

e Unpack the tar file using "tar zxvf <filename.tar.gz>" command.

e Run the configure script. Typical command line is something like "configure --
prefix=/opt/snort --with-mysql -with-snmp -with-opnssl".

e Run the make command.

e Runthe "make install™ command.

o Create a directory /var/log/snort.

o Create a directory /opt/snort/etc.

o Create a directory /opt/snort/rules.

e Copy snort.conf to Zopt/snort/etc directory.

e Copy classification.config file to Zopt/snort/etc directory.

e Copy reference.config file to Zopt/snort/etc directory.

e Copy all rule files to Zopt/snort/rules directory.

51

o Create startup script snortd and copy it to Zetc/init.d directory. Create its links in
/etc/rex directories, where x is a run level number, so that Snort starts at the boot time.
e If you are using MySQL with Snort, it should be started before starting Snort.

2.6 Location of Snort Files

Snort files can be categorized as follows:

« The Snort binary files, which is the actual executable.

e The Snort configuration file, which is typically snort.conf.

e Other Snort configuration files like classification.config and reference.config.
e Rulefiles.

e Logfiles.

If you install Snort from the RPM package, the Snort binary file is usually installed in
/usr/sbin directory. If you compile Snort yourself, the location of this file can be controlled
using the --prefix command line option.

The main configuration file snort.conf is installed in /etc/snort directory when you used
Snort RPM. However, you can save this file in any directory because you have to specify path to
this file on the command line when starting Snort. In the examples used in this book, the file is
stored under /opt/snort/etc directory.

Other configuration files like classification.config and reference.config are usually
stored in the same location as the snort. conf file. The path to the location of these files is found
in the snort.conf file. By changing that path, you can control the location of these files.

Rules files are referenced in the snort.conf file. If you install Snort from the RPM package,
rules files are also installed in 7etc/snort directory. In the examples in this book, when you
compile Snort yourself, you have installed these rule files under Zopt/snort/rules directory.
By modifying the snort.conf file, you can select a different location for the rule files.

The location of Snort log files can be set with the help of snort.conf file or using command
line options. Typically the log files are stored in /var/log/snort directory. If the log directory
does not exist, you have to create it manually. When Snort is logging data from different hosts, it
can create a directory for each host under /var/l1og/snort for the log files.

For example, to modify the default location of log files to /snortlog, use the following line in
snort.conf file:

config logdir: /snortlog

You can also change the location of log files using —1 command line option when starting Snort.
Chapter 3 contains a more detailed discussion of the snort.conf configuration file.

52

2.7 Snort Modes

Snort operates in two basic modes: packet sniffer mode and NIDS mode. It can be used as a
packet sniffer, like tcpdump or snoop. When sniffing packets, Snort can also log these packets to
a log file. The file can be viewed later on using Snort or tcpdump. No intrusion detection activity
is done by Snort in this mode of operation. Using Snort for this purpose is not very useful as
there are many other tools available for packet logging. For example, all Linux distributions
come with the tcpdump program which is very efficient.

When you use Snort in network intrusion detection (NIDS) mode, it uses its rules to find out if
there is any network intrusion detection activity.

2.7.1 Network Sniffer Mode

In the network sniffer mode, Snort acts like the commonly used program tcpdump. It can capture
and display packets from the network with different levels of detail on the console. You don't
need a configuration file to run Snort in the packet sniffing mode. The following command
displays information about each packet flowing on the network segment:

[root@conformix snort]# /opt/snort/bin/snort -v
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface ethO

--== Initializing Snort ==--
Decoding Ethernet on interface ethO

-—-== Initialization Complete ==--

-*> Snort! <*-

Version 1.9.0 (Build 209)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)
11/20-15:56:14.632067 192.168.1.100:2474 -> 192.168.1.2:22

TCP TTL:128 TOS:0xO 1D:4206 IpLen:20 DgmLen:40 DF

FrREA*FEE Seq: OXODAEEEI9C Ack: OxF5683C3A Win: Ox43EO TcpLen: 20
=—+=4=4+=4=4+=+=4=4+=4+=4=4+=4+=4=4+=4+=4+=4=4+=4+=4+=4+=4+=4=4+=4+=4+=+=+

11/20-15:56:14.632188 192.168.1.2:22 -> 192.168.1.100:2474

TCP TTL:64 TOS:0x10 1D:57042 IpLen:20 DgmLen:200 DF

*rFEAP*** Seq: OXF5683C8A Ack: Ox9DAEEE9C Win: O0x6330 TcpLen: 20
=—+=4=4+=4=4+=+=4=4+=4+=4=4+=4+=4=4+=4+=4+=4=4+=4+=4+=4+=4+=4=4+=4+=4+=+=+

11/20-15:56:14.632519 192.168.1.2:22 -> 192.168.1.100:2474

TCP TTL:64 TOS:0x10 1D:57043 IpLen:20 DgmLen:120 DF

*rREAP*** Seq: OxXF5683D2A Ack: Ox9DAEEE9C Win: 0Ox6330 TcpLen: 20
=—+=4=+4+=4=4+=+=4=4+=+=4=4+=4+=4=4+=4+=4+=4+=4+=4+=4=4+=4+=4=+=4+=4+=+=+

11/20-15:56:14.633891 192.168.1.2:22 -> 192.168.1.100:2474

TCP TTL:64 TOS:0x10 1D:57044 IpLen:20 DgmLen:184 DF

*rFEAP*** Seq: OxXF5683D7A Ack: Ox9DAEEE9C Win: 0Ox6330 TcpLen: 20
=-—+=4=4+=4=4+=+=4=4+=4+=4=4+=4+=4=4+=4+=4+=4=4+=t+=4=4+=+=4=4+=+=4=+=+

53

Snort will continue to display captured packets on the screen until you break using Ctrl-C. At the

time Snort terminates, it will display statistical information.

Let us now analyze the information displayed on screen when you run Snort in the packet

capture mode. The following is a typical output for a TCP packet:

11/20-15:56:14.633891 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 1D:57044 IpLen:20 DgmLen:184 DF
FXEAP*** Seq: OxF5683D7A Ack: OxX9DAEEE9C Win: 0x6330 TcpLen: 20

If you analyze the output, you can see the following information about the packet:

o Date and time the packet was captured.

e Source IP address is 192.168.1.2.

e Source port number is 22.

o Destination IP address is 192.168.1.100.

o Destination port is 2474.

o Transport layer protocol used in this packet is TCP.

e Time To Live or TTL value in the IP header part is 64.
e Type of Service or TOS value is 0x10.

o Packet ID is 57044,

e Length of IP header is 20.

e IP payload is 184 bytes long.

e Don't Fragment or DF bit is set in IP header.

e« Two TCP flags A and P are on.

e TCP sequence number is 0OXF5683D7A.

e Acknowledgement number in TCP header is OXDAEEE9C.
e TCP Window field is 0x6330.

e TCP header length is 20.

You can display more information with captured packets using more command line options. The

following command displays some information about application data attached to the packet in

addition to TCP, UDP and ICMP information. Note that the command still does not display all of

the packet data.

[root@conformix snort]# /opt/snort/bin/snort -dv
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface ethO

--== Initializing Snort ==--
Decoding Ethernet on interface ethO

-—-== Initialization Complete ==--

-*> Snort! <*-

Version 1.9.0 (Build 209)

By Martin Roesch (roesch@sourcefire.com, www.short.org)
11/20-16:18:11.129548 192.168.1.100:2474 -> 192.168.1.2:22

54

TCP TTL:128 TOS:0xO0 1D:4387 IpLen:20 DgmLen:40 DF
FrREA**HRE Seq: OXODAEF2FC Ack: OxF5688CDA Win: 0x4190 TcpLen: 20

R e e e e = e e e e e e e e e e A s o =F R NN 5
11/20-16:18:11.129723 192.168.1.2:22 -> 192.168.1.100:2474

TCP TTL:64 TOS:0x10 1D:57171 IpLen:20 DgmLen:120 DF
*FEAP*** Seq: OxF5688D2A Ack: Ox9DAEF2FC Win: 0x6330 TcpLen: 20

C5 1D 81 8F 70 B7 12 OB C1 1B 8F 6D A9 8F 1D 05p--..--. m....
40 7D F9 BD 84 21 11 59 05 01 E4 A1 01 20 AC 92 @}...t.Y_..... -
58 50 73 8D 17 EA E2 17 AD 3A AD 54 E2 50 80 CB XPs......:.T.-P..
DA E1 40 30 7B 63 OD 79 5A D8 51 07 93 95 2B A8 ..@0{c.yZ.Q...+.
F8 D4 F5 FA 76 D6 27 35 E8 6E E2 ED 41 2B 01 2Dv."5.n..A+.-

=—4=4=4=+4=4+=4+=4=4+=4+=4=4+=4=4=4+=4=4+=4=4+=4+=4=4+=4+=4=4+=4+=4=4+=+

11/20-16:18:11.130802 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 1D:57172 IpLen:20 DgmLen:120 DF
FEAP* Seq: OxF5688D7A Ack: Ox9DAEF2FC Win: 0x6330 TcpLen: 20

E9 7C 09 EO EO 5C 3E 17 1C BE 93 1F BO DA 92 40 ._].---\>........ @
D1 18 71 52 80 F3 B2 F7 59 CE F7 7C D4 8F FD B4 ..gR....Y..|----
98 08 A9 63 63 23 0D C8 9D A4 4F 68 87 06 OD 16 ...cc#....0Oh....
44 61 09 CD FF FE 8B 1A 5B D8 42 43 1D 1A 6F A8 Da...... [-BC..o.
14 90 C6 63 4C EE 9D 64 1B 90 CC 3A FB BD 7E E4 ...cL..d...:..~.

=t+=4=t=4=t=4=t=4t=t=t=t=4+=t+=t=t=4t=t+=t=+=4t=t+=t=+=4+=+=+=+=+

11/20-16:18:11.131701 192.168.1.2:22 -> 192.168.1.100:2474
TCP TTL:64 TOS:0x10 1D:57173 IpLen:20 DgmLen:120 DF
FrEEAPF*F*E Seq: OxXF5688DCA Ack: Ox9DAEF2FC Win: 0x6330 TcplLen: 20

AF CE 60 CB 79 06 BB 3D 58 72 76 F2 51 OF C1 9A .. .y..=Xrv.Q...
22 5A E3 27 49 F8 A5 00 1B 5A 4F 24 12 OF BF 70 “Z."1....Z0%...p
B7 81 AO OC F9 EB 83 D1 33 EB C1 5A 2A E6 2E 4B 3..2*..K
F1 98 FB 5A A9 C7 C3 92 78 B1 35 FF F7 59 CF B3 ...Z....X.5..Y..
83 D2 E7 FF 37 F8 34 56 CD OF 61 62 A9 16 A4 9F7.4V..ab....

=4=4=4=4=+=4=t=+=4=+=+ ==+ =+ =4=+ =+ =4 =+ =t =4 =4 === ===+

11/20-16:18:11.133935 192.168.1.100:2474 -> 192.168.1.2:22
TCP TTL:128 TOS:0x0 1D:4388 IpLen:20 DgmLen:40 DF
FrRIAFXEE Seq: OX9DAEF2FC Ack: OxF5688D7A Win: Ox40F0 TcpLen: 20

R o e e e = e e e e e e e e e e e e =
11/20-16:18:11.134057 192.168.1.2:22 -> 192.168.1.100:2474

TCP TTL:64 TOS:0x10 1D:57174 IpLen:20 DgmLen:280 DF
*xREAP*** Seq: OXF5688E1A Ack: Ox9DAEF2FC Win: 0x6330 TcpLen: 20

A6 CF F9 B5 EA 24 EO 48 34 45 4B 57 5D FF CB B5 $.HAEKW] . . .
D6 C9 B3 26 3C 59 66 2C 55 EE C1 CF 09 AD 3A C2 ...&<YF,U.....:.
74 B6 61 D3 C5 63 ED BD 6F 51 OD 5E 18 44 07 AF t.a..c..oQ.”~.D..
86 D2 8A 3F 82 FO D2 84 5C A6 7F CC D5 7B 90 56 ...7?....\....{.V
93 CF CF 4D DE 03 00 4D E4 4B AD 75 3E 03 71 DC ...M...M.K.u>.qQ-

A6 3D 78 DA 01 BF FO 33 46 7D E1 53 B5 62 94 9A .=x....3F}.S.b..
29 46 56 78 B1 73 CO 3E BB CO EC 5C 6E DO E6 BE)FVx.s.>...\n...
F9 5C 02 90 40 B1 BA 07 F1 96 2F AO OF 9D E1 3E .\..@-.... /....>
8C 3C 40 07 B2 21 28 CA 2D 41 AC 5C 77 C6 DO 3F .<@..71(C--A\w..?
73 0B 15 32 47 B5 CE E3 FB 83 B3 72 1A B4 64 9F s..2G...... r..d.

6D C7 55 B8 6B DB FC AF 94 8F F3 58 BO 79 CF 14 m.U.k...... X.y..
3F 9A FC 32 1D B6 21 BO 4D C3 64 82 CO 62 A8 8C ?..2..1.M.d..b..
80 C7 4A C8 BA D9 C3 OD 74 86 76 B8 49 8A 94 D1 ..J..... t.v.l...
4C F3 BF AF 55 3B 57 2B EA C7 48 B7 A4 BD B2 20 L...U;W+._H....
4A 66 B4 4E F3 2A 7E B6 F8 63 A8 61 42 F3 85 3B Jf.N.*~__.c.aB..;

=+4=4=4=4=+=4=+=+=4=+=+=4=+=+=4=+=+=4=4=4=4=4=4=4=4=4=4=4

To display all packet information on the console, use the following command. This command
displays captured data in hexadecimal as well as ASCII format.

[root@conformix snort]# /opt/snort/bin/snort -dev
Initializing Output Plugins!
Log directory = /var/log/snort

Initializing Network Interface ethO

--== Initializing Snort ==--
Decoding Ethernet on interface ethO

--== Initialization Complete ==--

-*> Snort! <*-

Version 1.9.0 (Build 209)

By Martin Roesch (roesch@sourcefire.com, www.short.org)
05/27-12:11:10.063820 0:D0:59:6C:9:8B -> FF:FF:FF:FF:FF:FF type:0x800
len:OxFC

192.168.1.100:138 -> 192.168.1.255:138 UDP TTL:128 TOS:0x0 1D:48572 lIpLen:20
DgmLen:-238

Len: 218

11 OE 82 D5 CO A8 01 64 00 8A 00 C4 00 00 20 46 d...... F

43 46 43 43 4E 45 4D 45 42 46 41 46 45 45 50 46 CFCCNEMEBFAFEEPF

41 43 41 43 41 43 41 43 41 43 41 43 41 41 41 00 ACACACACACACAAA.

20 41 42 41 43 46 50 46 50 45 4E 46 44 45 43 46 ABACFPFPENFDECF

43 45 50 46 48 46 44 45 46 46 50 46 50 41 43 41 CEPFHFDEFFPFPACA

42 00 FF 53 4D 42 25 00 00 00 00 00 00 OO OO0 OO B..SMB%---..----

00 00 00 00 OO OO0 OO0 OO OO OO OO OO OO OO0 00 00 .occceccccaaann-

00 00 11 OO0 OO0 2A 00 OO 00 OO OO OO OO OO 00 E8 R
03 00 00 OO0 OO OO0 OO0 OO OO0 2A 00 56 00 03 00 O1 *V.o...
00 01 00 02 00 3B 00 5C 4D 41 49 4C 53 4C 4F 54 ; -\MAILSLOT
5C 42 52 4F 57 53 45 00 OC 00 AO BB OD 00 42 41 \BROWSE....... BA
54 54 4C 45 43 4F 57 53 00 00 00 00 01 OO 03 OA TTLECOWS........
00 10 00 80 D4 FE 50 03 52 52 2D 4C 41 50 54 4F P.RR-LAPTO
50 00 P.

=—~+=4=+4+=+4=4+=+=4=4+=4+=4=4+=4+=4=4=4+=4+=4+=4+=t+=4=4+=+=4=4+=+=+=+

11/20-16:20:38.459702 0:D0:59:6C:9:8B -> 0:50:BA:5E:EC:25 type:0x800 len:0x3C
192.168.1.100:2474 -> 192.168.1.2:22 TCP TTL:128 TOS:0x0 1D:4506 IpLen:20
DgmLen:-40 DF

FrREAFF*EE Seq: OXODAEFDIC Ack: OxXF568E2FA Win: Ox3F20 TcpLen: 20

=4=+4+=4=+4=+=4=+=+=4=+=+=4+=+=4+=4+=+=+=4+=4+=4+=4+=+=4=4=+=4+=4=+
11/20-16:20:38.460728 0:50:BA:5E:EC:25 -> 0:D0:59:6C:9:8B type:0x800 len:0x86

192.168.1.2:22 -> 192.168.1.100:2474 TCP TTL:64 TOS:0x10 ID:57303 IpLen:20
DgmLen:120 DF

56

FXEAP*** Seq: OXF568E34A Ack: Ox9DAEFDOC Win: Ox6BDO TcpLen: 20

F9 7B 4B 96 3F C8 OA BC DF 9E EE 4F DA 27 6F B4 _{K.?...... 0.%0.
92 BD A7 C5 1D E4 35 AB DB BF 7B 56 B9 F8 BA A1 5.. . {V....
86 BB FE 6E FD 41 55 FF DO 51 04 AF 73 80 13 29 ...n.AU..Q..s..

D7 62 67 A4 B5 OC 5F 32 30 36 81 C2 9C 31 53 AD .bg..._206...1S.
3A 65 46 EE F1 52 59 ED 57 C7 6A 85 88 5A 3E D8 :eF..RY.W.j..Z>.

=4=4=4=4+=4=4+=4=4=4+=4+=4+=4=4+=4=4+=4=4=4+=4=4+=4=4+=4+=4+=4+=4=4+=+

11/20-16:20:38.461631 0:50:BA:5E:EC:25 -> 0:D0:59:6C:9:8B type:0x800 len:0x86
192.168.1.2:22 -> 192.168.1.100:2474 TCP TTL:64 TOS:0x10 ID:57304 IpLen:20
DgmLen:120 DF

*FERXAP*** Seq: OXF568E39A Ack: Ox9DAEFDOC Win: Ox6BDO TcpLen: 20

81 68 7B F3 7C E7 61 54 F9 6E 4C 24 C6 8B 68 63 .h{.]-aT.nL$..hc

74 A7 BE 99 5C F6 15 01 F7 EB 75 06 26 B7 FA 2C t...\..... u.&. .,
81 A3 27 BD FO 4F CB AD C9 58 D2 9B C7 4F 90 8A _."..0...X...0..
1D 15 D2 77 11 DC BC EE BF 05 20 49 BA 72 EA 1F ... w...... I.r..
12 49 14 B5 6C 6F 66 DC 26 39 84 D9 CE 09 F7 AE _I..l1of.&9......

R R R R e R R R R R R R = R

11/20-16:20:38.462524 0:50:BA:5E:EC:25 -> 0:D0:59:6C:9:8B type:0x800 len:0x86
192.168.1.2:22 -> 192.168.1.100:2474 TCP TTL:64 TOS:0x10 1D:57305 IpLen:20
DgmLen:-120 DF

*rREAP*** Seq: OXF568E3EA Ack: Ox9DAEFDI9C Win: Ox6BDO TcpLen: 20

12 92 BE 7B 11 AA E9 DC 09 F9 02 8D B5 8E 08 FB - {-vvuuuuun---
37 48 1D 1E 4B EF DF B2 19 D6 B9 26 F7 6E DF C3 7H..K...... &.n..
DD DD 01 Al 93 81 OE OB 35 4B 6B EA D3 E6 5E BA 5KK. . .M.
2B 95 78 8A 3D 77 E3 F4 C8 AB 94 E5 A5 7E D7 98 +.X.=W....... ~..
00 28 FO 7E 36 14 79 DF 10 B2 C6 13 F5 71 1F F1 .(.~6.y...... q. .

=t=t+=t+=+=+=t=t+=t+=+=+=t=t=t+=+=+=t+=t+=+=+=+=t+=+=+=+=+=+=+=+
2.7.1.1 Logging Snort Data in Text Format

You can log Snort data in text mode by adding -1 <directory name> on the command line.
The following command logs all Snort data in /var/l1og/snort directory in addition to
displaying it on the console.

snort -dev -1 /var/log/snort

When you go to the /var/1og/snort directory, you will find multiple directories under it. Each
of these directories corresponds to one host and contains multiple files. The name of the
directory is usually the same as the IP address of host. These files contain logs for different
connections and different types of network data. For example, files containing TCP data will
start with TCP. A typical name for a file containing TCP data is TCP-2489-23. A typical file
containing ICMP data may be 1CMP_ECHO. The format of data logged in these files is the same as
the data displayed on the screen when you run Snort in the network sniffer mode.

2.7.1.2 Logging Snort in Binary Format

57

On high-speed networks, logging data in ASCII format in many different files may cause high
overhead. Snort allows you to log all data in a binary file in tcpdump format and view it later on.
In this case, snort logs all data to a single file in raw binary form. A typical command for this
type of log is :

snort -1 /tmp -b

Snort will create a file in 7tmp directory. A typical file name may be snort. log.10378403309.
The last part of the file name is dependent on the clock on your machine. Each time you start
Snort in this mode, a new file will be created in the log directory. Sometimes this mode of
logging data is also called a quick mode.

To view this raw binary data, you can use Snort. The -r command line switch is used to specify
a file name with Snort. The following command will display the captured data from file
short.log-1037840339.

snort -dev -r /tmp/snort.log.1037840339| more

The output of this command will show data in exactly the same way if you are looking at it on
the console in real time. You can use different switches to display different levels of detail with
this data.

You can also display a particular type of data from the log file. The following command displays
all TCP type data from the log file:

snhort -dev -r / tmp/snort.log.1037840339 tcp
Similarly, ICMP and UDP types of data can also be displayed.

You can also use the tcpdump program to read files generated by Snort when logging in this
mode. The following command reads the Snort files and displays captured packets in the file:

[View full width]

[root@conformix snort]# tcpdump -r /tmp/snort.log.1037840514
20:01:54.984286 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 4119588794 win
16960 (DF)
20:01:54.984407 192.168.1.2.ssh > 192.168.1.100.2474: P 81:161(80) ack O win
32016 (DF)

[tos 0x10]
20:01:54.985428 192.168.1.2.ssh > 192.168.1.100.2474: P 161:241(80) ack O win
32016 (DF)

[tos 0x10]
20:01:54.986325 192.168.1.2.ssh > 192.168.1.100.2474: P 241:321(80) ack O win
32016 (DF)

[tos 0x10]
20:01:54.988508 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 161 win 16800 (DF)
20:01:54.988627 192.168.1.2.ssh > 192.168.1.100.2474: P 321:465(144) ack O
win 32016 (DF)

[tos 0x10]

58

20:01:54.990771 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 321 win 16640 (DF)
20:01:55.117890 192.168.1.100.2474 > 192.168.1.2.ssh: . ack 465 win 16496 (DF)
20:01:55.746665 192.168.1.1.1901 > 239.255.255.250.1900: udp 269
20:01:55.749466 192.168.1.1.1901 > 239.255.255.250.1900: udp 325
20:01:55.751968 192.168.1.1.1901 > 239.255.255.250.1900: udp 253
20:01:55.754145 192.168.1.1.1901 > 239.255.255.250.1900: udp 245
20:01:55.756781 192.168.1.1.1901 > 239.255.255.250.1900: udp 289
20:01:55.759258 192.168.1.1.1901 > 239.255.255.250.1900: udp 265
20:01:55.761763 192.168.1.1.1901 > 239.255.255.250.1900: udp 319
20:01:55.764365 192.168.1.1.1901 > 239.255.255.250.1900: udp 317
20:01:55.767103 192.168.1.1.1901 > 239.255.255.250.1900: udp 321
20:01:55.769557 192.168.1.1.1901 > 239.255.255.250.1900: udp 313
20:01:56.336697 192.168.1.100.2474 > 192.168.1.2.ssh: P 0:80(80) ack 465 win

16496 (DF)
[root@conformix snort]#

You can use different command line options with tcpdump to manipulate the display of data. For
more information about tcpdump, use the "man tcpdump™ command or see Appendix A.

2.7.2 Network Intrusion Detection Mode

In intrusion detection mode, Snort does not log each captured packet as it does in the network
sniffer mode. Instead, it applies rules on all captured packets. If a packet matches a rule, only
then is it logged or an alert is generated. If a packet does not match any rule, the packet is
dropped silently and no log entry is created. When you use Snort in intrusion detection mode,
typically you provide a configuration file on the command line. This configuration file contains
Snort rules or reference to other files that contain Snort rules. In addition to rules, the
configuration file also contains information about input and output plug-ins, which are discussed
in Chapter 4. The typical name of the Snort configuration file is snort.conf. We have
previously saved snort.conf configuration file in Zopt/snort/etc directory along with other
files. This was done during the installation procedure.® The following command starts Snort in
the Network Intrusion Detection (NID) mode:

151 1f you used the RPM package to install Snort, the typical location of the Snort configuration file is /etc/snort/snort.conf.

snort -c /opt/snort/etc/snort.conf

When you start this command, Snort will read the configuration file
/opt/snort/etc/snort.conf and all other files included in this file. Typically these files
contain Snort rules and configuration data. After reading these files, Snort will build its internal
data structures and rule chains. All captured packets will then be matched against these rules and
appropriate action will be taken, if configured to do so.

If you modify the snort.conf file, or any other file included in this file, you have to restart Snort
for the changes to take effect.

Other command line options and switches can be used when Snort is working in IDS mode. For

example, you can log data into files as well as display data on the command line. However if
Snort is being used for long-term monitoring, the more data you log, the more disk space you

59

need. Logging data to the console also requires some processing power and the processing power
of the host where Snort is running becomes a consideration. The following command will log
data to /var/1og/snort directory and will display it on the console screen in addition to acting
as NIDS:

snort -dev -1 /var/log/snort -c /etc/snort/snort.conf

However in most real-life situations, you will use -D command line switch with Snort so that it
does not log on the console but runs as a daemon.

In a typical scenario, you will also want to log Snort data into a database. Logging data into
MySQL database is discussed in Chapter 5.

2.8 Snort Alert Modes

When Snort is running in the Network Intrusion Detection (NID) mode, it generates alerts when
a captured packet matches a rule. Snort can send alerts in many modes. These modes are
configurable through the command line as well as through snort.conf file. Common alert
modes are explained in this section. To explain the alert modes, | have used a rule that creates an
alert when Snort detects an ICMP packet with TTL 100. This rule is listed below.

alert icmp any any -> any any (msg: "Ping with TTL=100"; \
ttl:100;)

Rules will be explained in the next chapter in detail. For this discussion, it is sufficient to
understand that this rule will create an alert with the text message "Ping with TTL=100"
whenever such an ICMP packet is captured. The rule does not care about source or destination
address in the packet. | have used the following command on my Windows PC to send one
ICMP echo packet with TTL=100.

C:\rrehman>ping -n 1 -i 100 192.168.1.3
Pinging 192.168.1.3 with 32 bytes of data:
Reply from 192.168.1.3: bytes=32 time=3ms TTL=255

Ping statistics for 192.168.1.3:

Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 3ms, Maximum = 3ms, Average = 3ms
C:\rrehman>

The "-n 1" command line option is used to send only one ICMP packet. The "-i 100" option is
used to set the TTL value equal to 100 in the ICMP packet. For details on the format of ICMP
packet headers, refer to RFC 792 at ftp://ftp.isi.edu/in-notes/rfc792.txt or Appendix C.

60

Whenever this command is executed, Snort captures the ICMP packet and creates an alert. The
amount of information logged with the alert depends on the particular alerting mode. Now let us
see how different alerting modes work on a packet.

2.8.1 Fast Mode
The fast alert mode logs the alert with following information:

e Timestamp

o Alert message (configurable through rules)
e Source and destination IP addresses

e Source and destination ports

To configure fast alert mode, you have to use "-A fast™ command line option. This alert mode
causes less overhead for the system. The following command starts Snort in fast alert mode:

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -q -A fast

The —qg option used on the command line stops the initial messages and final statistical summary
from being displayed on the screen. Now when you create an alert, it will be logged in
/var/log/snort/alert file. However, you can change the location of this file using -1
command line option. The alert message is similar to the following:

05/28-22:16:25.126150 [**] [1:0:0] Ping with TTL=100 [**]
{ICMP} 192.168.1.100 -> 192.168.1.3

This alert message shows the following information:
« Date and time the alert occurred.
o Message present in the rule that generated this alert. In this example, the message is "Ping
with TTL=100".
e Source address which is 192.168.1.100.
e Destination address which is 192.168.1.3.
o Type of packet; in the above example, type of packet is ICMP.

Note that the actual packet is not logged in this file when using this alert mode.

2.8.2 Full Mode

This is the default alert mode. It prints the alert message in addition to the packet header. Let us
start Snort with full alerting enabled with the following command:

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -q -A full

When Snort generates an alert in this mode, the message logged in /var/log/snort/alert file
is similar to the following:

61

[**]1 [1:0:0] Ping with TTL=100 [**]
05/28-22:14:37.766150 192.168.1.100 -> 192.168.1.3
ICMP TTL:100 TOS:0x0O 1D:40172 IpLen:20 DgmLen:60
Type:8 Code:0 1ID:768 Seq:20224 ECHO

As you can see, additional information is logged with the alert message. This additional
information shows different values in the packet header, including:

e Timeto Live (TTL) value in the IP packet header. For details on TTL value, refer to RFC
791 at ftp://ftp.isi.edu/in-notes/rfc791.txt

e The Type Of Service (TOS) value in the IP packet header. For details on TOS value, refer

to RFC 791 at at ftp://ftp.isi.edu/in-notes/rfc791.txt and Appendix C.

Length of IP packet header shown as IpLen:20.

Total length of IP packet shown as DgmLen:60.

ICMP Type field. For details on ICMP type field refer to RFC 792.

ICMP code value. For details on ICMP type field refer to RFC 792.

IP packet ID.

Sequence number.

ICMP packet type which is ECHO.

2.8.3 UNIX Socket Mode

If you use "-a unsock™ command line option with Snort, you can send alerts to another program
through UNIX sockets. This is useful when you want to process alerts using a custom application
with Snort. For more information on socket, use the "man socket" command.

2.8.4 No Alert Mode

You can also completely disable Snort alerts using "-A none™ command line option. This option
is very useful for high speed intrusion detection using unified logging. You can disable normal
logging using this option while using the unified option. Unified output plug-in is discussed in
Chapter 4.

2.8.5 Sending Alerts to Syslog

This command allows Snort to send alerts to Syslog daemon. Syslog is a system logger daemon
and it generates log files for system events. It reads its configuration file /etc/syslog.conf
where the location of these log files is configured. The usual location of syslog files is /var/log
directory. On Linux systems, usually /var/log/messages is the main logging file. For more
information, use the "man syslog" command. The "man syslog.conf" command shows the
format of the syslog.conf file.

Depending on the configuration of the Syslog using Zetc/syslog.conf file, the alerts can be
saved into a particular file. The following command enables Snort to log to the Syslog daemon:

/opt/snort/bin/snort -c /opt/snort/etc/snort.conf -s

62

Using the default configuration on my RedHat 7.1 computer, the messages are logged to
/var/log/messages file. When you cause an alert message by sending the special ICMP packet
with TTL=100, the following line will be logged to the /var/l1og/messages file.

May 28 22:21:02 snort snort[1750]: [1:0:0] Ping with TTL=100
{ICMP} 192.168.1.100 -> 192.168.1.3

Using Syslog facility will be discussed in Chapter 4 later on in this book. You will also learn
how to enable logging to Syslog using the output plug-in.

2.8.6 Sending Alerts to SNMP

One very useful feature of Snort is SNMP traps. You can configure an output plug-in to send
messages in the form of SNMP traps to a network management system. Using this feature you
can integrate your intrusion detection sensors into any centralized NMS like HP OpenView,
OpenNMS, MRTG and so on. Snort can generate SNMP version 2 and version 3 traps. The
configuration process for SNMP traps will be discussed later on in detail.

2.8.7 Sending Alerts to Windows

Snort can send alerts to Microsoft Windows machines in the form of pop-up windows. These
pop-up windows are controlled by Windows Messenger Service. Windows Messenger Service
must be running on your Windows machine for pop-up windows to work. You can go to Control
Panel and start the Services applet to find out if Windows Messenger Service is running. The
Services applet is found in the Administrative Tools menu on your Windows system. Depending
on your version of Microsoft Windows, it may be found in Control Panel or some other place.

The SAMBA client package must be installed on your UNIX machine. SAMBA is an open
source software suite that allows UNIX file and printer sharing with Microsoft Windows
machines. SAMBA software runs on UNIX platforms. It can work with any other operating
system that understands Common Internet File System (CIFS) or Server Message Block (SMB)
protocol. More information about SAMBA is available from http://www.samba.org.

The Snort alert mechanism uses smbclient program on the UNIX machine to connect to the
Windows machines and send the alerts. Make sure that the SAMBA client is working properly
before trying to use this service. SAMBA operations are dependent upon its configuration file
/etc/samba/smb.conf on a RedHat system. This file may be located at a different place on other
UNIX systems. Although detailed discussion on SAMBA is beyond the scope of this book, a
sample SAMBA configuration file is listed below. This file can be used to jump start SAMBA.
The file creates a workgroup REHMAN which you can view from "Network Neighborhood" part
of your Windows machines.

2.8.7.1 Sample Samba Configuration File

A sample /etc/samba/smb . conf file is as follows:

63

[global]
workgroup = REHMAN
server string = REHMAN file server
log file = /var/log/samba/log.%m
max log size = 50
security = user
encrypt passwords = yes
socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
dns proxy = no
domain logons = no
unix password sync = no
map to guest = never
password level = 0
null passwords no
os level =0
preferred master = yes
domain master = yes
wins support = yes
dead time =0
debug level = 0
load printers =
[homes]
comment = Home Directories
browseable = yes
writable = yes
available = yes
public = yes
only user = no
[htmldir]
comment = html stuff
path = /home/httpd/html
public = yes
writable = yes
printable = no
write list = rehman
[virtualhosting]
comment = html stuff
path = /usr/virt_web
public = yes
writable = yes
printable = no
write list = rehman
[printers]
[netlogon]
available = no

yes

More information about SMB alerts will be presented in later chapters. Note that you should
compile Snort with --with-smbalerts option in the configure script if you want to use this
option. Without this option in the configure script, SAMBA services can't be used with Snort.

2.9 Running Snort in Stealth Mode

Sometimes you may want to run Snort in stealth mode. In stealth mode, other hosts are not able
to detect the presence of the Snort machine. In other words, the Snort machine is not visible to

64

intruders or other people. There are multiple ways to run Snort in stealth mode. One of these
methods is to run Snort on a network interface where no IP address is assigned. Running Snort
on a network interface without an IP address is feasible in the following two cases:

1. A stand-alone Snort sensor with only one network adapter.

2. A Snort sensor with two network adapters: one to access the sensor from an isolated
network and the other one connected to the public network and running in stealth mode.
This arrangement is shown in Figure 2-3 where network interface eth1 is connected to a
private isolated network and etho is connected to a public network.

Figure 2-3. Running Snort in stealth mode on a system with two network
adapters.

Management
Workstation

Metwork from which
intruders are coming. Usually
connected to the Internet,

Snort Sensor

When you want to access the sensor itself, you go through network interface eth1 which has an
IP address configured to it. The management workstation shown in the figure may be used to
connect to the sensor either to collect data or to log information to a centralized database. If
many sensors are present in an organization, all of these are connected to this isolated network so
that they can log information to the central database running on the management workstation or
to some other database server connected to this isolated network.

No IP address is configured on network interface etho which has connectivity to the Internet.
Interface etho remains in stealth mode but can still listen to the network traffic from this side of
the network.

Before starting Snort on etho, you have to bring it up. On Linux systems, you can do it by using
the following command:

ifconfig ethO up

The command makes the interface usable without allocating an IP address. After that, you can
start Snort on this interface by using "-i eth0" command line option as follows:

65

snort -c /opt/snort/etc/snort.conf -i ethO -D

2.1

1
2
3
4
5
6.
7
8
9
1

O References

. Snort web site at http://www.snort.org

. SNMP information at http://www.simpletimes.com

. Winpcap Library at http://winpcap.polito.it/

. Apache web server at http://www.apache.org

. Argus Network Security Services Inc. at http://www.argusnetsec.com

Libpcap is available from http://www-nrg.ee.Ibl.gov/
Libnet at http://www.packetfactory.net

RFC 792 at ftp://ftp.isi.edu/in-notes/rfc792.txt

. RFC 791 at at ftp://ftp.isi.edu/in-notes/rfc791.txt

0. SAMBA at http://www.samba.org

66

Chapter 3. Working with Snort Rules

Like viruses, most intruder activity has some sort of signature. Information about these
signatures is used to create Snort rules. As mentioned in Chapter 1, you can use honey pots to
find out what intruders are doing and information about their tools and techniques. In addition to
that, there are databases of known vulnerabilities that intruders want to exploit. These known
attacks are also used as signatures to find out if someone is trying to exploit them. These
signatures may be present in the header parts of a packet or in the payload. Snort's detection
system is based on rules. These rules in turn are based on intruder signatures. Snort rules can be
used to check various parts of a data packet. Snort 1.x versions can analyze layer 3 and 4 headers
but are not able to analyze application layer protocols. Upcoming Snort version 2 is expected to
add support of application layer headers as well. Rules are applied in an orderly fashion to all
packets depending on their types.

A rule may be used to generate an alert message, log a message, or, in terms of Snort, pass the
data packet, i.e., drop it silently. The word pass here is not equivalent to the traditional meaning
of pass as used in firewalls and routers. In firewalls and routers, pass and drop are opposite to
each other. Snort rules are written in an easy to understand syntax. Most of the rules are written
in a single line. However you can also extend rules to multiple lines by using a backslash
character at the end of lines. Rules are usually placed in a configuration file, typically
snort.conf. You can also use multiple files by including them in a main configuration file.

This chapter provides information about different types of rules as well as the basic structure of a
rule. You will find many examples of common rules for intrusion detection activity at the end of
this chapter. After reading this chapter, along with the two preceding chapters, you should have
enough information to set up Snort as a basic intrusion detection system.

3.1 TCP/IP Network Layers

Before you move to writing rules, let us have a brief discussion about TCP/IP layers. This is
important because Snort rules are applied on different protocols in these layers.

TCP/IP is a five layer protocol. These layers interact with each other to make the communication
process work. The names of these layers are:

1. The physical layer.

2. The data link layer. In some literature this is also called the network interface layer. The
physical and data link layers consist of physical media, the network interface adapter, and
the driver for the network interface adapter. Ethernet addresses are assigned in the data
link layer.

3. The network layer, which is actually IP (Internet Protocol) layer. This layer is responsible
for point-to-point data communication and data integrity. All hosts on this layer are
distinguished by IP addresses. In addition to IP protocol, ICMP (Internet Control
Message Protocol) is another major protocol in this layer. Information about IP protocol

67

is available in RFC 791 available at http://www.rfc-editor.org/rfc/rfc791.txt. Information
about ICMP protocol is available at http://www.rfc-editor.org/rfc/rfc792.txt.

4. The transport layer, which is actually TCP/UDP layer in the TCP/IP protocol. TCP
(Transmission Control Protocol) is used for connection-oriented and reliable data transfer
from source to destination. UDP (User Datagram Protocol), on the other hand, is used for
connectionless data transfer. There is no assurance that data sent through UDP protocol
will actually reach its destination. UDP is used where data loss can be tolerated.
Information about UDP protocol is available in RFC 768 at http://www.rfc-
editor.org/rfc/rfc768.txt. Information about TCP protocol is available in RFC 793 at
http://www.rfc-editor.org/rfc/rfc793.txt.

5. The application layer consists of applications to provide user interface to the network.
Examples of network applications are Telnet, Web browsers, and FTP clients. These
applications usually have their own application layer protocol for data communication.

Snort rules operate on network (IP) layer and transport (TCP/UDP) layer protocols. However
there are methods to detect anomalies in data link layer and application layer protocols. The
second part of each Snort rule shows the protocol and you will learn shortly how to write these
rules.

3.2 The First Bad Rule

Here is the first (very) bad rule. In fact, this may be the worst rule ever written, but it does a very
good job of testing if Snort is working well and is able to generate alerts.

alert ip any any -> any any (msg: "IP Packet detected";)

You can use this rule at the end of the snort.conf file the first time you install Snort. The rule
will generate an alert message for every captured IP packet. It will soon fill up your disk space if
you leave it there! This rule is bad because it does not convey any information. What is the point
of using a rule on a permanent basis that tells you nothing other than the fact that Snort is
working? This should be your first test to make sure that Snort is installed properly. In the next
section, you will find information about the different parts of a Snort rule. However for the sake
of completeness, the following is a brief explanation of different words used in this rule:

e The word "alert" shows that this rule will generate an alert message when the criteria are
met for a captured packet. The criteria are defined by the words that follow.

e The "ip" part shows that this rule will be applied on all IP packets.

e The first "any" is used for source IP address and shows that the rule will be applied to all
packets.

e The second "any" is used for the port number. Since port numbers are irrelevant at the 1P
layer, the rule will be applied to all packets.

e The ->sign shows the direction of the packet.

e The third "any" is used for destination IP address and shows that the rule will be applied
to all packets irrespective of destination IP address.

o The fourth "any" is used for destination port. Again it is irrelevant because this rule is for
IP packets and port numbers are irrelevant.

68

e The last part is the rule options and contains a message that will be logged along with the
alert.

The next rule isn't quite as bad. It generates alerts for all captured ICMP packets. Again, this rule
is useful to find out if Snort is working.

alert icmp any any -> any any (msg: "ICMP Packet found";)

If you want to test the Snort machine, send a ping packet (which is basically ICMP ECHO
REQUEST packet on UNIX machines). Again, you can use this rule when you install Snort to
make sure that it is working well. As an example, send an ICMP packet to your gateway address
or some other host on the network using the following command:

ping 192.168.2.1

Note that 192.168.2.1 is the IP address of gateway/router or some other host on the same
network where the Snort machine is present. This command should be executed on the machine
where you installed Snort. The command can be used both on UNIX and Microsoft Windows
machines.

TIP

I use a slightly modified version of this rule to continuously monitor multiple Snort sensors just
to make sure everybody is up and running. This rule is as follows:

alert icmp 192.168.1.4 any -> 192.168.1.1 any (msg: ""HEARTBEAT";)

My Snort sensor IP address is 192.168.1.4 and gateway address is 192.168.1.1. | run the
following command through cron daemon on the Linux machine to trigger this rule every 10
minutes.

ping -n 1 192.168.1.1

The command sends exactly one ICMP packet to the gateway machine. This packet causes an
alert entry to be created. If there is no alert every 10 minutes, there is something wrong with the
sensor.

3.3 CIDR

Classless Inter-Domain Routing or CIDR is defined in RFC 1519. It was intended to make better
use of available Internet addresses by eliminating different classes (like class A and class B).
With the CIDR, you can define any number of bits in the netmask field, which was not possible
with class-based networking where the number of bits was fixed. Using CIDR, network
addresses are written using the number of bits in the netmask at the end of the IP address. For
example, 192.168.1.0/24 defines a network with network address 192.168.1.0 with 24 bits in the
netmask. A netmask with 24 bits is equal to 255.255.255.0. An individual host can be written

69

using all of the netmask bits, i.e., 32. The following rule shows that only those packets that go to
a single host with IP address192.168.2.113 will generate an alert:

alert icmp any any -> 192.168.1.113/32 any \

(msg: "Ping with TTL=100"; ttl:100;)
All addresses in Snort are written using the CIDR notation, which makes it very convenient to
monitor any subset of hosts.

3.4 Structure of a Rule

Now that you have seen some rules which are not-so-good but helpful in a way, let us see the
structure of a Snort rule. All Snort rules have two logical parts: rule header and rule options.
This is shown in Figure 3-1.

Figure 3-1. Basic structure of Snort rules.

Rule Header Rule Options

The rule header contains information about what action a rule takes. It also contains criteria for
matching a rule against data packets. The options part usually contains an alert message and
information about which part of the packet should be used to generate the alert message. The
options part contains additional criteria for matching a rule against data packets. A rule may
detect one type or multiple types of intrusion activity. Intelligent rules should be able to apply to
multiple intrusion signatures.

The general structure of a Snort rule header is shown in Figure 3-2.

Figure 3-2. Structure of Snort rule header.

Action Protocol | Address Port [direction | Address | Port

The action part of the rule determines the type of action taken when criteria are met and a rule is
exactly matched against a data packet. Typical actions are generating an alert or log message or
invoking another rule. You will learn more about actions later in this chapter.

The protocol part is used to apply the rule on packets for a particular protocol only. This is the
first criterion mentioned in the rule. Some examples of protocols used are IP, ICMP, UDP etc.

The address parts define source and destination addresses. Addresses may be a single host,
multiple hosts or network addresses. You can also use these parts to exclude some addresses
from a complete network. More about addresses will be discussed later. Note that there are two
address fields in the rule. Source and destination addresses are determined based on direction
field. As an example, if the direction field is "->", the Address on the left side is source and the
Address on the right side is destination.

70

In case of TCP or UDP protocol, the port parts determine the source and destination ports of a
packet on which the rule is applied. In case of network layer protocols like IP and ICMP, port
numbers have no significance.

The direction part of the rule actually determines which address and port number is used as
source and which as destination.

For example, consider the following rule that generates an alert message whenever it detects an
ICMP ping packet (ICMP ECHO REQUEST) with TTL equal to 100, as you have seen in

Chapter 2.

I 1CMP or Internet Control Message Protocol is defined in RFC 792. ICMP packets are used to convey different types of information in the network.
ICMP ECHO REQUEST is one type of ICMP packet. There are many other types of ICMP packets as defined in the RFC 792. The references at the end of
this chapter contains a URL to download the RFC document.

alert icmp any any -> any any (msg: "Ping with TTL=100"; \
ttl: 100;)

The part of the rule before the starting parenthesis is called the rule header. The part of the rule
that is enclosed by the parentheses is the options part. The header contains the following parts, in
order:

e Arrule action. In this rule the action is "alert”, which means that an alert will be generated
when conditions are met. Remember that packets are logged by default when an alert is
generated. Depending on the action field, the rule options part may contain additional
criteria for the rules.

e Protocol. In this rule the protocol is ICMP, which means that the rule will be applied only
on ICMP-type packets. In the Snort detection engine, if the protocol of a packet is not
ICMP, the rest of the rule is not considered in order to save CPU time. The protocol part
plays an important role when you want to apply Snort rules only to packets of a particular
type.

e Source address and source port. In this example both of them are set to "any", which
means that the rule will be applied on all packets coming from any source. Of course port
numbers have no relevance to ICMP packets. Port numbers are relevant only when
protocol is either TCP or UDP.

o Direction. In this case the direction is set from left to right using the -> symbol. This
shows that the address and port number on the left hand side of the symbol are source and
those on the right hand side are destination. It also means that the rule will be applied on
packets traveling from source to destination. You can also use a <- symbol to reverse the
meaning of source and destination address of the packet. Note that a symbol <> can also
be used to apply the rule on packets going in either direction.

o Destination address and port address. In this example both are set to "any", meaning the
rule will be applied to all packets irrespective of their destination address. The direction
in this rule does not play any role because the rule is applied to all ICMP packets moving
in either direction, due to the use of the keyword "any" in both source and destination
address parts.

71

The options part enclosed in parentheses shows that an alert message will be generated
containing the text string "Ping with TTL=100" whenever the condition of TTL=100 is met.
Note that TTL or Time To Live is a field in the IP packet header. Refer to RFC 791 at
http://www.rfc-editor.org/rfc/rfc791.txt or Appendix C for information on IP packet headers.

3.5 Rule Headers

As mentioned earlier, a rule header consists of the section of the rule before starting parentheses
and has many parts. Let us take a detailed look at different parts used in the rule header, starting
with rule actions.

3.5.1 Rule Actions

The action is the first part of a Snort rule. It shows what action will be taken when rule

conditions are met. An action is taken only when all of the conditions mentioned in a rule are
true. There are five predefined actions. However, you can also define your own actions as needed.
As a precaution, keep in mind that Snort versions 1.x and 2.x apply rules in different ways. In
Snort 1.x, if multiple rules match a given packet, only the first one is applied. After applying the
first rule, no further action is taken on the packet. However in Snort version 2, all rules are
applied before generating an alert message. The most severe alert message is then generated.

3.5.1.1 Pass

This action tells Snort to ignore the packet. This action plays an important role in speeding up
Snort operation in cases where you don't want to apply checks on certain packets. For example,
if you have a vulnerability assessment host on your own network that you use to find possible
security holes in your network, you may want Snort to ignore any attacks from that host. The
pass rule plays an important part in such a case.

3.5.1.2 Log

The log action is used to log a packet. Packets can be logged in different ways, as discussed later
in this book. For example, a message can be logged to log files or in a database. Packets can be
logged with different levels of detail depending on the command line arguments and
configuration file. To find available command line arguments with your version of Snort, use
"snort -?" command.

3.5.1.3 Alert

The alert action is used to send an alert message when rule conditions are true for a particular
packet. An alert can be sent in multiple ways. For example, you can send an alert to a file or to a
console. The functional difference between Log and Alert actions is that Alert actions send an
alert message and then log the packet. The Log action only logs the packet.

3.5.1.4 Activate

72

The activate action is used to create an alert and then to activate another rule for checking more
conditions. Dynamic rules, as explained next, are used for this purpose. The activate action is
used when you need further testing of a captured packet.

3.5.1.5 Dynamic

Dynamic action rules are invoked by other rules using the "activate" action. In normal
circumstances, they are not applied on a packet. A dynamic rule can be activated only by an
"activate" action defined in another role.

3.5.1.6 User Defined Actions

In addition to these actions, you can define your own actions. These rule actions can be used for
different purposes, such as:

« Sending messages to syslog. Syslog is system logger daemon and creates log file in
/var/log directory. Location of these files can be changed using Zetc/syslog.conf file.
For more information, use "man syslog" and "man syslog.conf" commands on a
UNIX system. Syslog may be compared to the event logger on Microsoft Windows
systems.

e Sending SNMP traps. SNMP traps are sent to a network management system like HP
OpenView or Open NMS at http://www.opennms.org.

o Taking multiple actions on a packet. As you have seen earlier in the structure of Snort
rules, a rule only takes one action. User defined rules can be used to take multiple actions.
For example, a user defined rule can be used to send an SNMP trap as well as to log the
alert data to the syslog daemon.

e Logging data to XML files.

Logging messages into a database. Snort is able to log messages to MySQL, Postgress SQL,
Oracle and Microsoft SQL server.

These new action types are defined in the configuration file snort.conf. A new action is
defined in the following general structure:

ruletype action_name

{
}

action definition

The ruletype keyword is followed by the action name. Two braces enclose the actual definition
of the action, just like a function in C programming. For example, an action named
smb_db_alert that is used to send SMB pop-up window alert messages to hosts listed in
workstation. list file and to MySQL database named "snort™ is defined below:

ruletype smb_db_alert

{
type alert

output alert_smb: workstation.list

73

output database: log, mysql, user=rr password=rr \
dbname=snort host=localhost
}

Theses types of rules will be discussed in the next chapter in detail. Usually they are related to
configuration of output plug-ins.

3.5.2 Protocols

Protocol is the second part of a Snort rule. The protocol part of a Snort rule shows on which type
of packet the rule will be applied. Currently Snort understands the following protocols:

o« |P

e ICMP

e TCP

o UDP

If the protocol is IP, Snort checks the link layer header to determine the packet type. If any other
type of protocol is used, Snort uses the IP header to determine the protocol type. Different packet
headers are discussed in Appendix C.

The protocols only play a role in specifying criteria in the header part of the rule. The options
part of the rule can have additional criteria unrelated to the specified protocol. For example,
consider the following rule where the protocol is ICMP.

alert icmp any any -> any any (msg: "Ping with TTL=100"; \
ttl: 100;)

The options part checks the TTL (Time To Live) value, which is not part of the ICMP header.
TTL is part of IP header instead. This means that the options part can check parameters in other
protocol fields as well. Header fields for common protocols and their explanation is found in

Appendix C.

3.5.3 Address

There are two address parts in a Snort rule. These addresses are used to check the source from
which the packet originated and the destination of the packet. The address may be a single IP
address or a network address. You can use any keyword to apply a rule on all addresses. The
address is followed by a slash character and number of bits in the netmask. For example, an
address 192.168.2.0/24 represents C class network 192.168.2.0 with 24 bits in the network mask.
A network mask with 24 bits is 255.255.255.0. Keep the following in mind about number of bits
in the netmask:

If the netmask consists of 24 bits, it is a C class network.
If the netmask consists of 16 bits, it is a B class network.
If the netmask consists of 8 bits, it is an A class network.
For a single host, use 32 bits in the netmask field.

74

You can also use any number of bits in the address part allowed by Classless Inter-Domain
Routing or CIDR. Refer to RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt for structure of IP
addresses and netmasks and to RFC 1519 at http://www.rfc-editor.org/rfc/rfc1519.txt for more
information on CIDR.

As mentioned earlier, there are two address fields in the Snort rule. One of them is the source
address and the other one is the destination address. The direction part of the rule determines
which address is source and which one is destination. Refer to the explanation of the direction
part to find more information about how this selection is made.

Following are some examples of how addresses are mentioned in Snort rules:

e An address 192.168.1.3/32 defines a single host with IP address 192.168.1.3.

e Anaddress 192.168.1.0/24 defines a class C network with addresses ranging from
192.168.1.0 to 192.168.1.255. There are 24 bits in the netmask, which is equal to
255.255.255.0.

e An address 152.168.0.0/16 defines a class B network with addresses ranging from
152.168.0.0 to 152.168.255.255. There are 16 bits in the netmask, which is equal to
255.255.0.0.

e Anaddress 10.0.0.0/8 defines a class A network with addresses ranging from 10.0.0.0 to
10.255.255.255. There are 8 bits in the netmask, which is equal to 255.0.0.0.

e Anaddress 192.168.1.16/28 defines an address range of 192.168.1.16 to 192.168.1.31.
There are 28 bits in the netmask field, which is equal to 255.255.255.240, and the
network consists of 16 addresses. You can place only 14 hosts in this type of network
because two of the total 16 addresses are used up in defining the network address and the
broadcast address. Note that the first address in each network is always the network
address and the last address is the broadcast address. For this network 192.168.1.16 is the
network address and 192.168.1.31 is the broadcast address.

For example, if you want to generate alerts for all TCP packets with TTL=100 going to web
server 192.168.1.10 at port 80 from any source, you can use the following rule:

alert tcp any any -> 192.168.1.10/32 80 (msg: "TTL=100"; \
ttl: 100;)

This rule is just an example to provide information about how IP addresses are used in Snort
rules.

3.5.3.1 Address Exclusion

Snort provides a mechanism to exclude addresses by the use of the negation symbol !, an
exclamation point. This symbol is used with the address to direct Snort not to test packets
coming from or going to that address. For example, the following rule is applied to all packets
except those that originate from class C network 192.168.2.0.

alert icmp ![192.168.2.0/24] any -> any any \
(msg: "Ping with TTL=100"; +ttl: 100;)

75

This rule is useful, for instance, when you want to test packets that don't originate from your
home network (which means you trust everyone in your home network!).

3.5.3.2 Address Lists

You can also specify list of addresses in a Snort rule. For example, if your home network
consists of two C class IP networks 192.168.2.0 and 192.168.8.0 and you want to apply the
above rule to all addresses but hosts in these two, you can use the following modified rule where
the two addresses are separated by a comma.

alert icmp 1[192.168.2.0/24,192.168.8.0/24] any -> any \
any (msg: "Ping with TTL=100"; +ttl: 100;)

Note that a square bracket is used with the negation symbol. You don't need to use brackets if
you are not using the negation symbol.

3.5.4 Port Number

The port number is used to apply a rule on packets that originate from or go to a particular port
or a range of ports. For example, you can use source port number 23 to apply a rule to those
packets that originate from a Telnet server. You can use the keyword any to apply the rule on all
packets irrespective of the port number. Port number is meaningful only for TCP and UDP
protocols. If you have selected IP or ICMP as the protocol in the rule, port number does not play
any role. The following rule is applied to all packets that originate from a Telnet server in
192.168.2.0/24, which is a class C network and contains the word "confidential™:

alert tcp 192.168.2.0/24 23 -> any any \
(content: "confidential™; msg: "Detected confidential™;)

The same rule can be applied to traffic either going to or originating from any Telnet server in
the network by modifying the direction to either side as shown below:

alert tcp 192.168.2.0/24 23 <> any any \
(content: "confidential'; msg: "Detected confidential™;)

Port numbers are useful when you want to apply a rule only for a particular type of data packet.
For example, if a vulnerability is related to only a HTTP (Hyper Text Transfer Protocol) web
server, you can use port 80 in the rule to detect anybody trying to exploit it. This way Snort will
apply that rule only to web server traffic and not to any other TCP packets. Writing good rules
always improves the performance of IDS.

3.5.4.1 Port Ranges
You can also use a range of ports instead of only one port in the port field. Use a colon to

separate starting and ending port numbers. For example, the following rule will create an alert
for all UDP traffic coming from ports 1024 to 2048 from all hosts.

76

alert udp any 1024:2048 -> any any (msg: "UDP ports";)

3.5.4.2 Upper and Lower Boundaries

While listing port numbers, you can also use only the starting port number or the ending port
number in the range. For example, a range specified as :1024 includes all port numbers up to and

including port 1024. A port range specified as 1000: will include all ports numbers including and
above port 1000.

3.5.4.3 Negation Symbol
As with addresses, you can also use the negation symbol with port numbers to exclude a port or a

range of ports from the scope of the Snort rule. The following rule logs all UDP traffic except for
source port number 53.

log udp any 153 -> any any log udp

You can't use comma character in the port filed to specify multiple ports. For example,
specifying 53,54 is not allowed. However you can use 53:54 to specify a port range.

3.5.4.4 Well-Known Port Numbers
Well-known port numbers are used for commonly used applications. Some of these port numbers

and their applications are listed in Table 3-1.

Table 3-1. Well-Known Port Numbers

Port Number Description

20 FTP data

21 FTP

22 SSH or Secure shell

23 Telnet

25 SMTP, used for e-mail server like Sendmail

37 NTP (Network Time Protocol) used for synchronizing time on network hosts
53 DNS server

67 BootP/DHCP client

68 BootP/DHCP server

69 TFTP

80 HTTP, used for all web servers

110 POP3, used for e-mail clients like Microsoft Outlook

77

Table 3-1. Well-Known Port Numbers

Port Number Description
161 SNMP

162 SNMP traps

443 HTTPS or Secure HTTP

514 Syslog

3306 MySQL

You can also look into /etc/services file on the UNIX platform to see more port numbers.
Refer to RFC 1700 for a detailed list at http://www.rfc-editor.org/rfc/rfc1700.txt. The Internet
Corporation for Assigned Names and Numbers (ICANN) now keeps track of all port numbers
and names. You can find more information at http://www.icann.org.

3.5.5 Direction

The direction field determines the source and destination addresses and port numbers in a rule.
The following rules apply to the direction field:

e A ->symbol shows that address and port numbers on the left hand side of the direction
field are the source of the packet while the address and port number on the right hand
side of the field are the destination.

e A <-symbol in the direction field shows that the packet is traveling from the address and
port number on the right hand side of the symbol to the address and port number on the
left hand side.

e A <>symbol shows that the rule will be applied to packets traveling on either direction.
This symbol is useful when you want to monitor data packets for both client and server.
For example, using this symbol, you can monitor all traffic coming from and going to a
POP or Telnet server.

3.6 Rule Options

Rule options follow the rule header and are enclosed inside a pair of parentheses. There may be
one option or many and the options are separated with a semicolon. If you use multiple options,
these options form a logical AND. The action in the rule header is invoked only when all criteria
in the options are true. You have already used options like msg and ttl in previous rule examples.
All options are defined by keywords. Some rule options also contain arguments. In general, an
option may have two parts: a keyword and an argument. Arguments are separated from the
option keyword by a colon. Consider the following rule options that you have already seen:

msg: "‘Detected confidential™;

In this option msg is the keyword and "Detected confidential” is the argument to this keyword.

78

The remainder of this section describes keywords used in the options part of Snort rules.
3.6.1 The ack Keyword

The TCP header contains an Acknowledgement Number field which is 32 bits long. The field
shows the next sequence number the sender of the TCP packet is expecting to receive. This field
is significant only when the ACK flag in the TCP header is set. Refer to Appendix C and RFC
793 for more information about the TCP header.

Tools like nmap (http://www.nmap.org) use this feature of the TCP header to ping a machine.
For example, among other techniques used by nmap, it can send a TCP packet to port 80 with
ACK flag set and sequence number 0. Since this packet is not acceptable by the receiving side
according to TCP rules, it sends back a RST packet. When nmap receives this RST packet, it
learns that the host is alive. This method works on hosts that don't respond to ICMP ECHO
REQUEST ping packets.

To detect this type of TCP ping, you can have a rule like the following that sends an alert
message:

alert tcp any any -> 192.168.1.0/24 any (flags: A; \
ack: 0; msg: "TCP ping detected";)

This rule shows that an alert message will be generated when you receive a TCP packet with the
A flag set and the acknowledgement contains a value of 0. Other TCP flags are listed in Table 3-
2. The destination of this packet must be a host in network 192.168.1.0/24. You can use any
value with the AcK keyword in a rule, however it is added to Snort only to detect this type of
attack. Generally when the A flag is set, the ACK value is not zero.

3.6.2 The classtype Keyword

Rules can be assigned classifications and priority numbers to group and distinguish them. To
fully understand the classtype keyword, first look at the file classification.config which is
included in the snort.conf file using the include keyword. Each line in the
classification.config file has the following syntax:

config classification: name,description,priority

The name is a name used for the classification. The name is used with the classtype keyword in
Snort rules. The description is a short description of the class type. Priority is a number that
shows the default priority of the classification, which can be modified using a priority keyword
inside the rule options. You can also place these lines in snort.conf file as well. An example of
this configuration parameter is as follows:

config classification: DoS,Denial of Service Attack,?2

In the above line the classification is DoS and the priority is 2. In Chapter 6, you will see that
classifications are used in ACID,2 which is a web-based tool to analyze Snort alert data. Now let

79

us use this classification in a rule. The following rule uses default priority with the classification
DoS:

21 ACID stands for Analysis Control for Intrusion Detection. It provides a web-based user interface to analyze data generated by Snort.

alert udp any any -> 192.168.1.0/24 6838 (msg:"'DoS"; \
content: "server'; classtype:DoS;)

The following is the same rule but we override the default priority used for the classification.

alert udp any any -> 192.168.1.0/24 6838 (msg:''DoS™; \
content: “server™; classtype:DoS; priority:1)

Using classifications and priorities for rules and alerts, you can distinguish between high- and
low-risk alerts. This feature is very useful when you want to escalate high-risk alerts or want to
pay attention to them first.

NOTE

Low priority numbers show high priority alerts.

If you look at the ACID browser window, as discussed in Chapter 6, you will see the
classification screens as shown in Figure 3-3. The second column in the middle part of the screen
displays different classifications for captured data.

Figure 3-3. Use of the classification keyword in displaying Snort alerts inside
ACID window.

80

Sy ALk Alek Linding - “Beroialt Inbernet Eplorer al0l =l

| Mo 8 e Ferte Toh b _ L]
Q. 0.1 & %|p v & @|C 2 B-LL® "
| Bekboms [g1 152 168,10, Zhoo_stan_sierts.pip B s =
G II_'—H'_'?&M%Q-W-‘ | hest | e - G - #0 W-""““E‘.
[P @3 [sewo || soovgmainess - (11 socimats @ ryvabost < 0 et = .erm ot o = n
=

Alert Listing o

s Malndenanis

[Back]

Sanrch

Added 10 slei]s) (o he Akt Cache

ﬂu-rlid DE on | S Mowimibar 30, 2002073811

Cuzplaying alerts 1.7 of 7 total

20021130

[CVE] [CVE] MSC LIPND g9ess . g 20024106

makcmed advemsemant FMECARk - (00%) 04:32:28 073756
[url] BAD TRAFFIC loopback traffic o 5 (0% 1 5 g 20021106 20021106

0501115 060121
2002-11-00 20021117
atempledrecon 2 (0%} 1 u L T TR T R

—
[[CVE)[CVE] SHMP Broatcast ag
r 20021112 20021126

[bugtrag) [arachHIDS) WEB-IS wal-apphication 25 {0%)

vigwi SOUTCe via ranslate headar Sty 17:42:03 333
bugtrag] EXPERMENTAL WEB-

- [bupts 2002.11:28 20024129

CLEENT javascript URL host spocling alempled-usaer 1(0%) 1 1 1 15:15.270 15 520
SCAN Proey (3080) atlemgt atsmpied-recon 2 (0%) 1 i i E;ELF %}:'129"'3'__':9
r wal-applicati on 2002-11-20 2002-11-29

WEE-ES seripts deoess actity e ! Vo ez 15272

Acticn
[{action] =l Sewcted | ALL onScreen |

[Loaded in 22 seconds)

Roman Damyliw

i CT vk

Other tools also use the classification keyword to prioritize intrusion detection data. A typical
classification.config file is shown below. This file is distributed with the Snort 1.9.0. You
can add your own classifications to this file and use them in your own rules.

[View full width]

$1d: classification.config,v 1.10 2002/08/11 23:37:18 cazz Exp $

The Ffollowing includes information for prioritizing rules

#

Each classification includes a shortname, a description, and a default
priority for that classification.

#

This allows alerts to be classified and prioritized. You can specify
what priority each classification has. Any rule can override the default
priority for that rule.

#

Here are a few example rules:

#

alert TCP any any -> any 80 (msg: "EXPLOIT ntpdx overflow';

dsize: > 128; classtype:attempted-admin; priority:10;

81

alert TCP any any -> any 25 (msg:"'SMTP expn root'; flags:A+; \
content:"expn root'; nocase; classtype:attempted-recon;)

The first rule will set its type to "attempted-admin' and override
the default priority for that type to 10.

The second rule set its type to "attempted-recon'™ and set its
priority to the default for that type.

config classification:shortname,short description,priority

HFHHFE HFHHFEHHFHHIFHHT

config classification: not-suspicious,Not Suspicious Traffic,3

config classification: unknown,Unknown Traffic,3

config classification: bad-unknown,Potentially Bad Traffic, 2

config classification: attempted-recon,Attempted Information Leak,?2

config classification: successful-recon-limited, Information Leak,2

config classification: successful-recon-largescale,Large Scale Information
Leak,2

config classification: attempted-dos,Attempted Denial of Service,?2

config classification: successful-dos,Denial of Service,2

config classification: attempted-user,Attempted User Privilege Gain,l1
config classification: unsuccessful-user,Unsuccessful User Privilege Gain,l
config classification: successful-user,Successful User Privilege Gain,l1
config classification: attempted-admin,Attempted Administrator Privilege
Gain,1

config classification: successful-admin,Successful Administrator Privilege
Gain,1

NEW CLASSIFICATIONS

config classification: rpc-portmap-decode,Decode of an RPC Query,2

config classification: shellcode-detect,Executable code was detected,1
config classification: string-detect,A suspicious string was detected,3
config classification: suspicious-filename-detect,A suspicious filename was
detected, 2

config classification: suspicious-login,An attempted login using a suspicious
username was

detected,?2

config classification: system-call-detect,A system call was detected,?
config classification: tcp-connection,A TCP connection was detected,4
config classification: trojan-activity,A Network Trojan was detected, 1
config classification: unusual-client-port-connection,A client was using an
unusual port,2

config classification: network-scan,Detection of a Network Scan,3

config classification: denial-of-service,Detection of a Denial of Service
Attack,?2

config classification: non-standard-protocol,Detection of a non-standard
protocol or event,2

config classification: protocol-command-decode,Generic Protocol Command
Decode, 3

config classification: web-application-activity,access to a potentially
vulnerable web

application,2

82

config classification: web-application-attack,Web Application Attack,l
config classification: misc-activity,Misc activity,3
config classification: misc-attack,Misc Attack,?2
config classification: icmp-event,Generic ICMP event,3
config classification: kickass-porn,SCORE! Get the lotion!,1
config classification: policy-violation,Potential Corporate Privacy
Violation,1
config classification: default-login-attempt,Attempt to login by a default
username and

password, 2

3.6.3 The content Keyword

One important feature of Snort is its ability to find a data pattern inside a packet. The pattern
may be presented in the form of an ASCII string or as binary data in the form of hexadecimal
characters. Like viruses, intruders also have signatures and the content keyword is used to find
these signatures in the packet. Since Snort version 1.x does not support application layer
protocols, this keyword, in conjunction with the offset keyword, can also be used to look into the
application layer header.

The following rule detects a pattern "GET" in the data part of all TCP packets that are leaving
192.168.1.0 network and going to an address that is not part of that network. The GET keyword
is used in many HTTP related attacks; however, this rule is only using it to help you understand
how the content keyword works.

alert tcp 192.168.1.0/24 any -> 1192.168.1.0/24] any \
(content: "GET"; msg: "GET matched';)

The following rule does the same thing but the pattern is listed in hexadecimal.

alert tcp 192.168.1.0/24 any -> 1[192.168.1.0/24] any \
(content: |47 45 54|"; msg: ""GET matched';)

Hexadecimal number 47 is equal to ASCII character G, 45 is equal to E, and 54 is equal to T.
You can also match both ASCII strings and binary patterns in hexadecimal form inside one rule.
Just enclose the hexadecimal characters inside a pair of bar symbols: ||.

When using the content keyword, keep the following in mind:

« Content matching is a computationally expensive process and you should be careful of
using too many rules for content matching.

« If you provide content as an ASCII string, you should escape the double quote, colon and
bar symbols.

e You can use multiple content keywords in one rule to find multiple signatures in the data
packet.

« Content matching is case sensitive.

There are three other keywords that are used with the content keyword. These keywords add
additional criteria while finding a pattern inside a packet. These are:

83

e The offset keyword
e The depth keyword
e The nocase keyword

These keywords are discussed later in this chapter. The first two keywords are used to confine
the search within a certain range of the data packet. The nocase keyword is used to make the
search case-insensitive.

3.6.4 The offset Keyword

The offset keyword is used in combination with the content keyword. Using this keyword, you
can start your search at a certain offset from the start of the data part of the packet. Use a number
as argument to this keyword. The following rule starts searching for the word "HTTP" after 4
bytes from the start of the data.

alert tcp 192.168.1.0/24 any -> any any \
(content: "HTTP'"; offset: 4; msg: "HTTP matched';)

You can use the depth keyword to define the point after which Snort should stop searching the
pattern in the data packets.

3.6.5 The depth Keyword

The depth keyword is also used in combination with the content keyword to specify an upper
limit to the pattern matching. Using the depth keyword, you can specify an offset from the start
of the data part. Data after that offset is not searched for pattern matching. If you use both offset
and depth keywords with the content keyword, you can specify the range of data within which
pattern matching should be done. The following rule tries to find the word "HTTP" between
characters 4 and 40 of the data part of the TCP packet.

alert tcp 192.168.1.0/24 any -> any any (content: \
“"HTTP'; offset: 4; depth: 40; msg: "HTTP matched';)

This keyword is very important since you can use it to limit searching inside the packet. For
example, information about HTTP GET requests is found in the start of the packet. There is no
need to search the entire packet for such strings. Since many packets you capture are very long in
size, it wastes a lot of time to search for these strings in the entire packet. The same is true for
many other Snort signatures.

3.6.6 The content-list Keyword

The content-list keyword is used with a file name. The file name, which is used as an argument
to this keyword, is a text file that contains a list of strings to be searched inside a packet. Each
string is located on a separate line of the file. For example, a file named "porn™ may contain the
following three lines:

"porl’]"

84

"hardcore"
"under 18"

The following rule will search these strings in the data portion of all packets matching the rule
criteria.

alert ip any any -> 192.168.1.0/24 any (content-list: \
“porn™; msg: "Porn word matched';)

You can also use the negation sign ! with the file name if you want to generate an alert for a
packet where no strings match.

3.6.7 The dsize Keyword

The dsize keyword is used to find the length of the data part of a packet. Many attacks use buffer
overflow vulnerabilities by sending large size packets. Using this keyword, you can find out if a
packet contains data of a length larger than, smaller than, or equal to a certain number. The
following rule generates an alert if the data size of an IP packet is larger than 6000 bytes.

alert i1p any any -> 192.168.1.0/24 any (dsize: > 6000; \
msg: '‘Large size IP packet detected';)

3.6.8 The flags Keyword

The flags keyword is used to find out which flag bits are set inside the TCP header of a packet.
Each flag can be used as an argument to flags keyword in Snort rules. A detailed description of
the TCP flag bits is present in RFC 793 at http://www.rfc-editor.org/rfc/rfc793.txt. These flag
bits are used by many security related tools for different purposes including port scanning tools
like nmap (http://www.nmap.org). Snort supports checking of these flags listed in Table 3-2.

Table 3-2. TCP flag bits

Flag Argument character used in Snort rules
FIN or Finish Flag F
SYN or Sync Flag
RST or Reset Flag
PSH or Push Flag
ACK or Acknowledge Flag
URG or Urgent Flag
Reserved Bit 1
Reserved Bit 2

N C > T X0 W]W

85

Table 3-2. TCP flag bits
Flag Argument character used in Snort rules
No Flag set 0

You can also use !, +, and * symbols just like IP header flag bits (discussed under the fragbits
keyword) for AND, OR and NOT logical operations on flag bits being tested. The following rule
detects any scan attempt using SYN-FIN TCP packets.

alert tcp any any -> 192.168.1.0/24 any (flags: SF; \
msg: ""SYNC-FIN packet detected;)

Note that ! symbol is used for NOT, + is used for AND, and * is used for OR operation.

3.6.9 The fragbits Keyword

The IP header contains three flag bits that are used for fragmentation and re-assembly of IP
packets. These bits are listed below:

e Reserved Bit (RB), which is reserved for future use.

o Don't Fragment Bit (DF). If this bit is set, it shows that the IP packet should not be
fragmented.

o More Fragments Bit (MF). If this bit is set, it shows that more fragments of this IP packet
are on the way. If this bit is not set, it shows that this is the last fragment (or the only
fragment) of the IP packet. The sending host fragments IP packets into smaller packets
depending on the maximum size packet that can be transmitted through a communication
medium. For example, the Maximum Transfer Units or MTU defines the maximum
length of a packet on the Ethernet networks. This bit is used at the destination host to
reassemble IP fragments.

For more information on Flag bits refer to RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt.
Sometimes these bits are used by hackers for attacks and to find out information related to your
network. For example, the DF bit can be used to find the minimum and maximum MTU for a
path from source to destination. Using the fragbits keyword, you can find out if a packet contains
these bits set or cleared. The following rule is used to detect if the DF bit is set in an ICMP
packet.

alert icmp any any -> 192.168.1.0/24 any (fragbits: D; \
msg: ""Don"t Fragment bit set";)

In this rule, D is used for DF bit. You can use R for reserved bit and M for MF bit. You can also
use the negation symbol ! in the rule. The following rule detects if the DF bit is not set, although
this rule is of little use.

alert icmp any any -> 192.168.1.0/24 any (fragbits: ID; \
msg: "Don"t Fragment bit not set';)

86

The AND and OR logical operators can also be used to check multiple bits. The + symbol
specifies all bits be matched (AND operation) while the * symbol specifies any of the specified
bits be matched (OR operation).

3.6.10 The icmp_id Keyword

The icmp_id option is used to detect a particular ID used with ICMP packet. Refer to Appendix
C for ICMP header information. The general format for using this keyword is as follows:

icmp_id: <ICMP_id_number>

An ICMP identified field is found in ICMP ECHO REQUEST and ICMP ECHO REPLY
messages as discussed in RFC 792. This field is used to match ECHO REQUEST and ECHO
REPLY messages. Usually when you use the ping command, both of these types of ICMP
packets are exchanged between sending and receiving hosts. The sending host sends ECHO
REQUEST packets and the destination host replies with ECHO REPLY -type ICMP packets.
This field is useful for discovering which packet is the reply to a particular request. The
following rule checks if the ICMP ID field in the ICMP header is equal to 100. It generates an
alert if this criterion is met.

alert icmp any any -> any any (icmp_id: 100; \
msg: "ICMP I1D=100";)

3.6.11 The icmp_seq Keyword

The icmp_seq option is similar to the icmp_id keyword The general format for using this
keyword is as follows:

icmp_seq: <ICMP_seq_number>

The sequence number is also a field in the ICMP header and is also useful in matching ICMP
ECHO REQUEST and ECHO REPLY matches as mentioned in RFC 792. The keyword helps to
find a particular sequence number. However, the practical use of this keyword is very limited.
The following rule checks a sequence number of 100 and generates an alert:

alert icmp any any -> any any (icmp_seq: 100; \
msg: "ICMP Sequence=100";)

3.6.12 The itype Keyword

The ICMP header comes after the IP header and contains a type field. Appendix C explains the
IP header and the different codes that are used in the type field. A detailed discussion is found in
RFC 792 at http://www.rfc-editor.org/rfc/rfc792.txt. The itype keyword is used to detect attacks
that use the type field in the ICMP packet header. The argument to this field is a number and the
general format is as follows:

itype: "ICMP_type_number™

87

The type field in the ICMP header of a data packet is used to determine the type of the ICMP
packet. Table 3-3 lists different ICMP types and values of the type field in the ICMP header.

Table 3-3. ICMP type filed values

Value Type of ICMP Packet
0 Echo reply
3 Destination unreachable
4 Source quench
5 Redirect
8 Echo request
11 Time exceed
12 Parameter problem
13 Timestamp request
14 Timestamp reply
15 Information request
16 Information reply

For example, if you want to generate an alert for each source quench message, use the following
rule:

alert icmp any any -> any any (itype: 4; \
msg: "ICMP Source Quench Message received";)

The ICMP code field is used to further classify ICMP packets.
3.6.13 The icode Keyword

In ICMP packets, the ICMP header comes after the IP header. It contains a code field, as shown
in Appendix C and RFC 792 at http://www.rfc-editor.org/rfc/rfc792.txt. The icode keyword is
used to detect the code field in the ICMP packet header. The argument to this field is a number
and the general format is as follows:

icode: "ICMP_codee number"™

The type field in the ICMP header shows the type of ICMP message. The code field is used to
explain the type in detail. For example, if the type field value is 5, the ICMP packet type is
"ICMP redirect” packet. There may be many reasons for the generation of an ICMP redirect
packet. These reasons are defined by the code field as listed below:

o If code field is O, it is a network redirect ICMP packet.

88

e Ifcode field is 1, it is a host redirect packet.
o If code is 2, the redirect is due to the type of service and network.
o If code is 2, the redirect is due to type of service and host.

The icode keyword in Snort rule options is used to find the code field value in the ICMP header.
The following rule generates an alert for host redirect ICMP packets.

alert icmp any any -> any any (itype: 5; \
icode: 1; msg: "ICMP 1D=100"";)

Both itype and icode keywords are used. Using the icode keyword alone will not do the job
because other ICMP types may also use the same code value.

3.6.14 The id Keyword

The id keyword is used to match the fragment ID field of the IP packet header. Its purpose is to
detect attacks that use a fixed ID number in the IP header of a packet. Its format is as follows:

id: "id_number"

If the value of the id field in the IP packet header is zero, it shows that this is the last fragment of
an IP packet (if the packet was fragmented). The value 0 also shows that it is the only fragment if
the packet was not fragmented. The id keyword in the Snort rule can be used to determine the
last fragment in an IP packet.

3.6.15 The ipopts Keyword

A basic IPv4 header is 20 bytes long as described in Appendix C. You can add options to this IP
header at the end. The length of the options part may be up to 40 bytes. IP options are used for
different purposes, including:

« Record Route (rr)
e Time Stamps (ts)
e Loose Source Routing (lsrr)
o Strict Source Routing (ssrr)

For a complete list of IP options see RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt. In
Snort rules, the most commonly used options are listed above. These options can be used by
some hackers to find information about your network. For example, loose and strict source
routing can help a hacker discover if a particular network path exists or not.

Using Snort rules, you can detect such attempts with the ipopts keyword. The following rule
detects any attempt made using Loose Source Routing:

alert i1p any any -> any any (ipopts: Isrr; \
msg: "'Loose source routing attempt';)

89

You can also use a logto keyword to log the messages to a file. However, you can't specify
multiple IP options keywords in one rule.

3.6.16 The ip_proto Keyword
The ip_proto keyword uses IP Proto plug-in to determine protocol number in the IP header. The

keyword requires a protocol number as argument. You can also use a name for the protocol if it
can be resolved using 7etc/protocols file. Sample entries in this file look like the following:

ax.25 93 AX.25 # AX.25 Frames

ipip 94 IPIP # Yet Another IP encapsulation

micp 95 MICP # Mobile Internetworking Control Pro.
scc-sp 96 SCC-SP # Semaphore Communications Sec. Pro.
etherip 97 ETHERIP # Ethernet-within-1P Encapsulation
encap 98 ENCAP # Yet Another IP encapsulation

99 # any private encryption scheme

gmtp 100 GMTP # GMTP

ifmp 101 I1FMP # Ipsilon Flow Management Protocol
pnni 102 PNNI # PNNI over IP

The following rule checks if IPIP protocol is being used by data packets:

alert ip any any -> any any (ip_proto: ipip; \
msg: "IP-1P tunneling detected;)

The next rule is the same except that it uses protocol number instead of name (more efficient).

alert ip any any -> any any (ip_proto: 94; \
msg: "IP-1P tunneling detected";)

Protocol numbers are defined in RFC 1700 at http://www.rfc-editor.org/rfc/rfc1700.txt. The
latest numbers can be found from the ICANN web site at http://www.icann.org or at IANA web
site http://www.iana.orq.

3.6.17 The logto Keyword

The logto keyword is used to log packets to a special file. The general syntax is as follows:
logto:logto_ log

Consider the following rule:

alert icmp any any -> any any (logto:logto log; ttl: 100;)

This rule will log all ICMP packets having TTL value equal to 100 to file logto_log. A typical
logged packet in this file is as follows:

[root@conformix]# cat logto_ log
07/03-03:57:56.496845 192.168.1.101 -> 192.168.1.2

90

ICMP TTL:100 TOS:0x0 1D:33822 IpLen:20 DgmLen:60

Type:8 Code:0 1ID:768 Seq:9217 ECHO

61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 abcdefghijklImnop
71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69 grstuvwabcdefghi

=—+=4=+=4=4+=4+=4=4+=4+=4=4+=4+=4+=4+=4+=4+=4=4+=+=4=+=+=4+=+

[root@conformix]#

Information logged in the above example is as follows:

Data and time the packet was logged.

Source IP address is 192.168.1.101.

Destination IP address is 192.168.1.2.

Protocol used in the packet is ICMP.

The TTL (Time To Live) field value in the IP header is 100.

The TOS (Type Of Service) field value in IP header is 0. This value shows that this is a
normal packet. For details of other TOS values, refer to RFC 791.

IP packet ID is 33822.

Length of IP header is 20 bytes.

Length of the packet is 60 bytes.

ICMP type filed value is 8.

ICMP code value is 0.

ICMP ID value is 768.

ICMP Sequence field value is 9217.

The ECHO part shows that this is an ICMP ECHO packet.

The remaining part of the log shows the data that follows the ICMP header.

There are a few things to remember when you use this option:

Don't use the full path with the file name. The file will automatically be created in the log
directory which is /var/log/snort by default.

Don't use a space character after the colon character used with logto keyword. If you use
a space character, it is considered part of the file name. If you use a space character for
clarity, enclose the file name in double quotation marks.

3.6.18 The msg Keyword

The msg keyword in the rule options is used to add a text string to logs and alerts. You can add a
message inside double quotations after this keyword. The msg keyword is a common and useful
keyword and is part of most of the rules. The general form for using this keyword is as follows:

msg:

"Your message text here';

If you want to use some special character inside the message, you can escape them by a
backslash character.

91

3.6.19 The nocase Keyword

The nocase keyword is used in combination with the content keyword. It has no arguments. Its
only purpose is to make a case insensitive search of a pattern within the data part of a packet.

3.6.20 The priority Keyword

The priority keyword assigns a priority to a rule. Priority is a number argument to this keyword.
Number 1 is the highest priority. The keyword is often used with the classtype keyword. The
following rule has a priority 10:

alert ip any any -> any any (ipopts: Isrr; \
msg: "'Loose source routing attempt'; priority: 10;)

The priority keyword can be used to differentiate high priority and low priority alerts.
3.6.21 The react Keyword

The react keyword is used with a rule to terminate a session to block some sites or services. Not
all options with this keyword are operational. The following rule will block all HTTP
connections originating from your home network 192.168.1.0/24. To block the HTTP access, it
will send a TCP FIN and/or FIN packet to both sending and receiving hosts every time it detects
a packet that matches these criteria. The rule causes a connection to be closed.

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing \
HTTP connection™; react: block;)

In the above rule, block is the basic modifier. You can also use the warn modifier to send a
visual notice to the source. You can also use the additional modifier msg which will include the
msg string in the visual notification on the browser. The following is an example of this
additional modifier.

alert tcp 192.168.1.0/24 any -> any 80 (msg: "Outgoing \
HTTP connection™; react: warn, msg;)

In order to use the react keyword, you should compile Snort with --enable-flexresp command
line option in the configure script. For a discussion of the compilation process, refer to Chapter 2.

The react should be the last keyword in the options field. The warn modifier still does not work
properly in the version of Snort I am using.

3.6.22 The reference Keyword
The reference keyword can add a reference to information present on other systems available on
the Internet. It does not play any role in the detection mechanism itself and you can safely ignore

it as far as writing Snort rules is concerned. There are many reference systems available, such as
CVE and Bugtraqg. These systems keep additional information about known attacks. By using

92

this keyword, you can link to this additional information in the alert message. For example, look
at the following rule in the misc. rules file distributed with Snort:

alert udp $EXTERNAL _NET any -> $HOME_NET 1900 \
(msg:"MISC UPNP malformed advertisement'; \
content:"NOTIFY * '; nocase; classtype:misc-attack; \
reference:cve,CAN-2001-0876; reference:cve, \
CAN-2001-0877; sid:1384; rev:2;)

This rule generates the following entry in /var/log/snort/alert file:

[**1 [1:1384:2] MISC UPNP malformed advertisement [**]
[Classification: Misc Attack] [Priority: 2]
12/01-15:25:21.792758 192.168.1.1:1901 -> 239.255.255.250:1900
UDP TTL:150 TOS:0xO ID:9 IpLen:z20 DgmLen:341

Len: 321

[Xref => cve CAN-2001-0877][Xref => cve CAN-2001-0876]

The last line of this alert shows a reference where more information about this alert can be found.
The reference.config file plays an important role because it contains the actual URL to reach
a particular reference. For example, the following line in reference.config file will reach the
actual URL using the last line of the alert message.

config reference: cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=

When you add CAN-2001-0876 at the end of this URL, you will reach the web site containing
information about this alert. So the actual URL for information about this alert is
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876.

Multiple references can be placed in a rule. References are also used by tools like ACID= to
provide additional information about a particular vulnerability. The same log message, when
displayed in an ACID window, will look like Figure 3-4. In this figure, the URL is already
inserted under the "Triggered Signature™ heading. You can click on it to go to the CVE web site
for more information.

BIACID is discussed in Chapter 6.

Figure 3-4. Use of reference keyword in ACID window.

93

I} ACID: Aleet - Micrnsolt Internet Explorer — =10 =i

Fo Ede Vww Favorkes Tosk Heb L .
Q.0 - ¢ =2 %, v @& & - T - :
Back Ferniwed Soo Relesh Home | Sewdth Fawoebes Meds Hmmy | MM Pt 0 _
| Acress [g 192.169.1 21000_ory_alort G AR "4230- 020562902 Mont_oeim Fa - R
T N U T e
WL search [« || (- pockmerks @ sty vahoot « WP wshoo! = Franos - (57 vabooiMad - =
AI rt Home
e Search | AG Maimienence
[Back]

Quered DB on - Sun Decomber 01, 2002 16:06 14
Meta Criteria

IPC

Alert #1
[First] >» Newt #1(5-16177) |

m “ Triggerad Signature

E - 16290 |2002-12-01 16:05:39 [CVE] [CVE] MISC uPHP malformed advertisement

192.168.1.2 mthi PO

Metall cansor

Alert .

G o

Group ||
T T8) 005 R 2 G
192.168.1.1 [238. 255265250 | 4 341 9 (e} v} 150 | 29163

™ Heqon mm

Urable to resolve aodress | Unabie fo resolve address

Options [T
gource port lemgth
el {dest port]iengtnl

1901 1800 321
I i acatkow 310

3.6.23 The resp Keyword

The resp keyword is a very important keyword. It can be used to knock down hacker activity by
sending response packets to the host that originates a packet matching the rule. The keyword is
also known as Flexible Response or simply FlexResp and is based on the FlexResp plug-in. The
plug-in should be compiled into Snort, as explained in Chapter 2, using the command line option
(--with-Flexresp) in the configure script. The following rule will send a TCP Reset packet to
the sender whenever an attempt to reach TCP port 8080 on the local network is made.

alert tcp any any -> 192.168.1.0/24 8080 (resp: rst_snd;)
You can send multiple response packets to either sender or receiver by specifying multiple

responses to the resp keyword. The arguments are separated by a comma. The list of arguments
that can be used with this keyword is found in Table 3-4.

94

Argument
rst_snd
rst_rcv
rst_all
icmp_net
icmp_host
icmp_port
icmp_all

Table 3-4. Arguments to resp keyword

Description

Sends a TCP Reset packet to the sender of the packet
Sends a TCP Reset packet to the receiver of the packet
Sends a TCP Reset packet to both sender and receiver
Sends an ICMP Network Unreachable packet to sender
Sends an ICMP Host Unreachable packet to sender
Sends an ICMP Port Unreachable packet to sender
Sends all of the above mentioned packets to sender

3.6.24 The rev Keyword

The rev keyword is added to Snort rule options to show a revision number for the rule. If you are

updating rules, you can use this keyword to distinguish among different revision. Output

modules can also use this number to identify the revision number. The following rule shows that
the revision number is 2 for this rule:

alert ip any any -> any any (ipopts: Isrr; \
msg: ''Loose source routing attempt'; rev: 2;)

For more information, refer to the sid keyword, which is related to the rev keyword.

3.6.25 The rpc Keyword

The rpc keyword is used to detect RPC based requests. The keyword accepts three numbers as

arguments:

e Application number
e Procedure number
o Version number

These arguments are separated by a comma. You can also use an asterisk to match all numbers in
a particular location of the arguments. The following rule detects RPC requests for TPC number
10000, all procedures and version number 3.

alert ip any any -> 192.168.1.0/24 any (rpc: 10000,*,3; \
msg: "RPC request to local network';)

95

3.6.26 The sameip Keyword

The sameip keyword is used to check if source and destination IP addresses are the same in an IP
packet. It has no arguments. Some people try to spoof IP packets to get information or attack a
server. The following rule can be used to detect these attempts.

alert ip any any -> 192.168.1.0/24 any (msg: "‘Same IP"; \
sameip;)

3.6.27 The seq Keyword

The seq keyword in Snort rule options can be used to test the sequence number of a TCP packet.
The argument to this keyword is a sequence number. The general format is as follows:

seq: '‘'sequence_number';

Sequence numbers are a part of the TCP header. More explanation of sequence number is found
in Appendix C where the TCP header is discussed.

3.6.28 The flow= Keyword

™ This is available in Snort 1.9 and above.

The flow keyword is used to apply a rule on TCP sessions to packets flowing in a particular
direction. You can use options with the keyword to determine direction. The following options
can be used with this keyword determine direction:

e to client
o to_server
o from_client
o from_server

These options may be confusing the first time you look at them. Just keep in mind that options
starting with "to" are used for responses and options starting with "from" are used for requests.

Other options are also available which are used to apply the rule to different states of a TCP
connection.

e The stateless option is used to apply the rule without considering the state of a TCP
session.

e The established option is used to apply the rule to established TCP sessions only.

e The no_stream option enables rules to be applied to packets that are not built from a
stream.

e The stream_only option is used to apply the rules to only those packets that are built from
a stream.

96

TCP streams are handled by the stream4 preprocessor discussed in the next chapter. TCP streams
are also discussed in RFC 793. A TCP session is established and finished with a defined
sequence of TCP packet exchanges as defined in RFC 793. The stateless and established options
are related to TCP session state.

3.6.29 The session Keyword

The session keyword can be used to dump all data from a TCP session. It can dump all session
data or just printable characters. The following rule dumps all printable data from POP3 sessions:

log tcp any any -> 192.168.1.0/24 110 (session: printable;)

If you use "all" as argument to this keyword, everything will be dumped. Use the logto keyword
to log the traffic to a particular file.

A TCP session is a sequence of data packets exchanged between two hosts. The session is
usually initiated and closed by the client using the three-way handshake method discussed in
RFC 793. For example, when your e-mail client software starts collecting e-mail from a POP3
server, it first starts the communication by exchanging TCP packets. The mail is then
downloaded. After downloading the e-mail, the client closes the connection. All communication
taking place during this process is a TCP session.

3.6.30 The sid Keyword

The sid keyword is used to add a "Snort ID" to rules. Output modules or log scanners can use
SID to identify rules. Authors have reserved SID ranges for rules as shown below:

e Range 0-99 is reserved for future use.
e Range 100-1,000,000 is reserved for rules that come with Snort distribution.
e All numbers above 1,000,000 can be used for local rules.

Refer to the list of rules that came with your Snort distribution for examples. The only argument
to this keyword is a number. The following rule adds SID equal to 12000001.

alert i1p any any -> any any (ipopts: Isrr; \
msg: '‘Loose source routing attempt'; sid: 1000001;)

Using SID, tools like ACID can display the actual rule that generated a particular alert.
3.6.31 The tag Keyword
The tag keyword is another very important keyword that can be used for logging additional data

from/to the intruder host when a rule is triggered. The additional data can then be analyzed later
on for detailed intruder activity. The general syntax of the keyword is as follows:

tag: <type>, <count>, <metric>[, direction]

97

The arguments are explained in Table 3-5.

Table 3-5. Arguments used with tag keyword

Argument Description

Type You can use either "session™ or "host" as the type argument. Using session, packets
are logged from the particular session that triggered the rule. Using host, all packets
from the host are logged.

Count This indicates either the number of packets logged or the number of seconds during
which packets will be logged. The distinction between the two is made by the metric
argument.

Metric You can use either "packets™ or "seconds™ as mentioned above.

Direction This argument is optional. You can use either "src" to log packets from source or
"dst" to log packets from the destination.

The following rule logs 100 packets on the session after it is triggered.

alert tcp 192.168.2.0/24 23 -> any any \
(content: "boota'; msg: "Detected boota'; \
tag: session, 100, packets;)

3.6.32 The tos Keyword

The tos keyword is used to detect a specific value in the Type of Service (TOS) field of the IP
header. The format for using this keyword is as follows:

tos: 1;

For more information on the TOS field, refer to RFC 791 and Appendix C, where the IP packet
header is discussed.

3.6.33 The ttl Keyword

The ttl keyword is used to detect Time to Live value in the IP header of the packet. The keyword
has a value which should be an exact match to determine the TTL value. This keyword can be
used with all types of protocols built on the IP protocol, including ICMP, UDP and TCP. The
general format of the keyword is as follows:

ttl: 100;

The traceroute utility uses TTL values to find the next hop in the path. The traceroute sends UDP
packets with increasing TTL values. The TTL value is decremented at every hop. When it
reaches zero, the router generates an ICMP packet to the source. Using this ICMP packet, the
utility finds the IP address of the router. For example, to find the fifth hop router, the traceroute

98

utility will send UDP packets with TTL value set to 5. When the packet reaches the router at the
fifth hop, its value becomes zero and an ICMP packet is generated.

Using the ttl keyword, you can find out if someone is trying to traceroute through your network.
The only problem is that the keyword needs an exact match of the TTL value.

For more information on the TTL field, refer to RFC 791 and Appendix C where the IP packet
header is discussed.

3.6.34 The uricontent Keyword

The uricontent keyword is similar to the content keyword except that it is used to look for a
string only in the URI part of a packet.

3.7 The Snort Configuration File

Snort uses a configuration file at startup time. A sample configuration file snort.conf is
included in the Snort distribution. You can use any name for the configuration file, however
snort.conf is the conventional name. You use the -c command line switch to specify the name
of the configuration file. The following command uses /opt/snort/snort.conf as the
configuration file.

/opt/snort/snort -c /opt/snort/snort.conf

You can also save the configuration file in your home directory as -snortrc, but specifying it on
the command line is the most widely used method. There are other advantages to using the
configuration file name as a command line argument to Snort. For example, it is possible to
invoke multiple Snort instances on different network interfaces with different configuration. This
file contains six basic sections:

« Variable definitions, where you define different variables. These variables are used in
Snort rules as well as for other purposes, like specifying the location of rule files.

o Config parameters. These parameters specify different Snort configuration options. Some
of them can also be used on the command line.

e Preprocessor configuration. Preprocessors are used to perform certain actions before a
packet is operated by the main Snort detection engine.

o Output module configuration. Output modules control how Snort data will be logged.

« Defining new action types. If the predefined action types are not sufficient for your
environment, you can define custom action types in the Snort configuration file.

« Rules configuration and include files. Although you can add any rules in the main
snort.conf file, the convention is to use separate files for rules. These files are then
included inside the main configuration file using the include keyword. This keyword will
be discussed later in this chapter.

Although the out-of-the-box configuration file works, you need to modify it to adapt it to your
environment. A sample configuration file is presented later on.

99

3.7.1 Using Variables in Rules

In the configuration file, you can use variables. This is a very convenient way of creating rules.
For example, you can define a variable HOME_NET in the configuration file.

var HOME_NET 192.168.1.0/24

Later on you can use this variable HOME_NET in your rules:

alert ip any any -> $HOME NET any (ipopts: Isrr; \
msg: ''‘Loose source routing attempt'; sid: 1000001;)

As you can see, using variables makes it very convenient to adapt the configuration file and rules
to any environment. For example, you don't need to modify all rules when you copy rules from
one network to another; you just need to modify a single variable.

3.7.1.1 Using a List of Networks in Variables

You can also define variables that contain multiple items. Consider that you have multiple
networks in the company. Your intrusion detection system is right behind the company firewall
connecting to the Internet. You can define a variable as a list of all of these networks. The
following variable shows that HOME_NETWORK consists of two networks, 192.168.1.0/24 and
192.168.10.0/24.

var HOME_NET [192.168.1.0/24,192.168.10.0/24]
All networks in the variable name are separated by a comma.
3.7.1.2 Using Interface Names in Variables

You can also use interface names in defining variables. The following two statements define
HOME_NET and EXTERNAL_NET variables on a Linux machine.

var HOME_NET $ethO_ADDRESS
var EXTERNAL_NET $ethl_ADDRESS

The HOME_NET variable uses the IP address and network mask value assigned to interface
etho and EXTERNAL_NET uses the IP address and network mask assigned to network
interface eth1. This arrangement is more convenient since you can change IP addresses on the
interfaces without modifying rules or even variables themselves.

3.7.1.3 Using the any Keyword
The any keyword can also be a variable. It matches to everything, just as it does in rules (such as

addresses and port numbers). For example, if you want to test packets regardless of their source,
you can define a variable like the following for EXTERNAL_NET.

100

var EXTERNAL_NET any

There are many variables defined in the snort.conf file that come with the Snort distribution.
While installing Snort, you need to modify these variables according to your network.

3.7.2 The config Directives

The config directives in the snort.conf file allow a user to configure many general settings for
Snort. Examples include the location of log files, the order of applying rules and so on. These
directives can be used to replace many command line options as well. The general format of
applying a config directive is as follows:

config directive name[: value]

Table 3-6 shows a list of directives used in the snort.conf file.

Directive

order
alertfile
classification

decode_arp
dump_chars_only
dump_payload

decode_data_link
bpf_file

set_gid

daemon
reference_net

interface

Table 3-6. Snort config directives

Description

Changes the order in which rules are applied. It is equivalent to the —
0 command line option.

Used to set the name of the alert file. Alert file is created in log
directory (see logdir directive).

Builds classification for rules. See explanation of the classtype
keyword used in rules.

Equivalent to —a command line option. It turns ON arp decoding.
Equivalent —C command line option.

Equivalent to —d command line option. It is used to dump the data
part of the packet.

Equivalent to —e command line option. Using this directive you can
decode data link layer headers (Ethernet header, for example).

Equivalent to —F command line option.

Equivalent to —g command line option. Using this directive you can
set the group ID under which Snort runs. For example, you can use
"config set_gid: mygroup”

Equivalent to -D command line option. It invokes Snort as daemon
instead of foreground process.

Equivalent to —-h command line option. It sets the home network
address.

Equivalent to —i command line option. It sets the interface for Snort.

101

Directive

Table 3-6. Snort config directives

Description

alert_with_interface_name Equivalent to =T command line option. This directive is used to

logdir

umask
pkt_count
nolog

obfuscate

no_promisc

quiet

chroot

checksum_mode
set_uid

utc

verbose
dump_payload_verbose
show_year

stateful

append the interface name to the alert message. This is sometimes
useful if you are monitoring multiple interfaces on the same sensor.

Equivalent to —I command line option. It sets the directory where
Snort logs data. The default location of the log directory is
/var/log/snort.

Equivalent to —-m command line option. Using this option you can set
the UMASK while running Snort.

Equivalent to —-n command line option. Using this directive you can
exit from Snort after a defined number of packets.

Equivalent to -N command line option. Logging is disabled except
alerts. Remember, alerts are really both alerts and logs.

Equivalent to —O command line option. It is used to obfuscate IP
addresses so that you are able to send the logs for analysis to
someone without disclosing the identity of your network.

Equivalent to —p command line option and is used to disable
promiscuous mode.

Equivalent to —g command line option. This will disable banner
information at Snort startup time and prevent statistical information
from being displayed.

Equivalent to —t command line option. It is used to change root
directory for Snort to a specific directory.

Used to checksum for particular types of packets. It takes arguments
such as none, noip, notcp, noicmp, noudp, and all.

Equivalent to —u command line option and is used to set user ID for
the Snort process.

Equivalent to —U command line option and is used to use UTC
instead of local time in alerts and logs.

Equivalent to —v command line option. It is used to log messages to
standard output in addition to standard logging.

Equivalent to —X command line option. This dumps the received raw
packet on the standard output.

Equivalent to -y command line option and is used to display year in
the timestamp.

Used to set assurance mode for stream4 preprocessor. Preprocessors
are discussed in detail in Chapter 4.

102

You have already seen how the classification directive is used in the classification.config
file. As another example, the following line is used to start Snort in the daemon mode.

config daemon
You can also use —D command line option to start Snort in the daemon mode.
3.7.3 Preprocessor Configuration

Preprocessors or input plug-ins operate on received packets before Snort rules are applied to
them. The preprocessor configuration is the second major part of the configuration file. This
section provides basic information about adding or removing Snort preprocessors. Detailed
information about each preprocessor is found in the next chapter.

The general format of configuring a preprocessor is as follows:

preprocessor <preprocessor_name>[: <configuration_options>]

The first part of the line is the keyword preprocessor. The name of the preprocessor follows this
keyword. If the preprocessor can accept some options or arguments, you can list these options
after a colon character at the end of the name of preprocessor, which is optional.

The following is an example of a line in the configuration file for IP defragmentation
preprocessor frag2.

preprocessor frag2

The following is an example of a stream4 preprocessor with an argument to detect port scans.
The stream4 preprocessor has many other arguments as well, as described in Chapter 4.

preprocessor stream4: detect_scans

Both frag2 and stream4 are predefined preprocessors. You can also write your own preprocessors
if you are a programmer. Guidelines for writing preprocessors are provided with the Snort source
code.

3.7.4 Output Module Configuration

Output modules, also called output plug-ins, manipulate output from Snort rules. For example, if
you want to log information to a database or send SNMP traps, you need output modules. The
following is the general format for specifying an output module in the configuration file.

output <output _module_name>[: <configuration_options>]

For example, if you want to store log messages to a MySQL database, you can configure an
output module that contains the database name, database server address, user name and password.

103

output database: alert, mysql, user=rr password=boota \
dbname=snort host=localhost

There may be additional steps to make the output module work properly. In the case of MySQL
database, you need to setup a database, create tables, create user, set permissions and so on.
More information on configuring output modules is found in Chapter 4.

3.7.5 Defining New Action Types

You already know that the first part of each Snort rule is the action item. Snort has predefined
action types; however, you can also define your own action types in the configuration file. A new
action type may use multiple output modules. The following action type creates alert messages
that are logged into the database as well as in a file in the tcpdump format.

ruletype dump_database

{
type alert

output database: alert, mysql, user=rr dbname=snort \
host=localhost
output log tcpdump: tcpdump_log file
}

This new action type can be used in rules just like other action types.

dump_database icmp any any -> 192.168.1.0/24 any \
(fragbits: D; msg: "Don"t Fragment bit set';)

When a packet matches the criteria in this rule, the alert will be logged to the database as well as
to the tcpdump_log_file.

3.7.6 Rules Configuration

The rules configuration is usually the last part of the configuration file. You can create as many
rules as you like using variables already defined in the configuration file. All of the previous
discussion in this chapter was about writing new rules. The rules configuration is the place in the
configuration file where you can put your rules. However the convention is to put all Snort rules
in different text files. You can include these text files in the snort.conf file using the "include"
keyword. Snort comes with many predefined rule files. The names of these rule files end

with .rule. You have already seen in the last chapter how to put these rule files in the proper
place during the installation process.

3.7.7 Include Files

You can include other files inside the main configuration file using the include keyword. You
can think of including a file as equivalent to inserting the contents of the included file into the
main configuration file at the point where it is included. In fact, most of the predefined rules that
come with the Snort distribution are found in include files. All files in the Snort distribution
whose name ends with . rulles contain rules and they are included in the snort.conf file. These

104

rule files are included in the main snort.conf file using the "include" keyword. The following
is an example of including myrules.rules file in the main configuration file.

include myrules.rules

It is not necessary that the name of the rules file must end with .rule. You can use a name of
your choice for your rule file.

3.7.8 Sample snort.conf File

The following is a sample configuration file for Snort. All lines starting with the # character are
comment lines. Whenever you modify the configuration file, you have to restart Snort for the
changes to take effect.

Variable Definitions

var HOME_NET 192.168.1.0/24
var EXTERNAL_NET any

var HTTP_SERVERS $HOME_NET
var DNS_SERVERS $HOME_ NET
var RULE PATH ./

preprocessors

preprocessor frag2

preprocessor stream4: detect_scans

preprocessor stream4 reassemble

preprocessor http_decode: 80 -unicode -cginull
preprocessor unidecode: 80 -unicode -cginull
preprocessor bo: -nobrute

preprocessor telnet _decode

preprocessor portscan: $HOME _NET 4 3 portscan.log
preprocessor arpspoof

output modules

output alert_syslog: LOG AUTH LOG_ALERT

output log_ tcpdump: snort.log

output database: log, mysql, user=rr password=boota \
dbname=snort host=localhost

output xml: log, File=/var/log/snortxml

Rules and include files

include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/exploit.rules
include $RULE_PATH/scan.rules
include $RULE_PATH/finger.rules
include $RULE_PATH/ftp.rules

include $RULE_PATH/telnet.rules
include $RULE_PATH/smtp.rules
include $RULE_PATH/rpc.rules

include $RULE_PATH/dos.rules

include $RULE_PATH/ddos.rules
include $RULE_PATH/dns.rules

include $RULE_PATH/tftp.rules
include $RULE_PATH/web-cgi.rules
include $RULE_PATH/web-coldfusion.rules

105

include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-frontpage.rules
include $RULE_PATH/web-misc.rules
include $RULE_PATH/web-attacks.rules
include $RULE_PATH/sql.rules

include $RULE_PATH/x11.rules

include $RULE_PATH/icmp.rules

include $RULE_PATH/netbios.rules
include $RULE_PATH/misc.rules

include $RULE_PATH/attack-responses.rules
include $RULE PATH/myrules.rules

3.8 Order of Rules Based upon Action
The five types of the rules can be categorized into three basic types.

1. Alertrules
2. Passrules
3. Logrules

When a packet is received by Snort, it is checked in this order. Each packet has to go through all
Alert rule checks before it is allowed to pass. This scheme is the most secure since no packet
passes through without being checked against all alert types. However most of the packets are
normal traffic and do not show any intruder activity. Testing all of the packets against all alert
rules requires a lot of processing power. Snort provides a way to change this testing order to one
which is more efficient, but more dangerous.

1. Passrules
2. Alertrules
3. Logrules

You must be careful when choosing this order because just one badly written pass rule may
allow many alert packets to pass through without being checked. If you really know what you are
doing, you can use the —o command line switch to disable the default order and enable the new
order of applying rules. You can also use "config order" in the configuration file for this purpose.
Again, this is dangerous and you have been warned twice now! If you are sure of what you are
doing, add this line in the snort.conf file:

config order

If you define your own rule types, they are checked last in the sequence. For example, if you
have defined a rule type snmp_alerts, the order of rule application will be:

Alert -> Pass -> Log ->snmp_alerts

106

3.9 Automatically Updating Snort Rules

There are multiple tools available to update Snort signatures. When using any of these tools you
must be careful because you may accidentally modify or delete your customized rules. | shall
discuss two methods of updating rules.

3.9.1 The Simple Method

This method consists of a simple shell script. It requires that you have wget program installed on
your system. The wget program is used to retrieve any file using HTTP protocol. In essence, it is
just like a web browser, but it retrieves one file from a command line argument.

#1/bin/sh
Place of storing your Snort rules. Change these variables
according to your installation.

RULESDIR=/etc/snort
RULESDIRBAK=/etc/snort/bak

Path to wget program. Modify for your system if needed.
WGETPATH=/usr/bin

URI for Snort rules
RULESURI=http://www.snort.org/downloads/snortrules.tar.gz

Get and untar rules.
cd /tmp

rm -rf rules
$WGETPATH/wget $RULESURI

tar -zxf snortrules.tar.gz
rm —F snortrules.tar.gz

Make a backup copy of existing rules
mv $RULESDIR/*_rules $RULESDIRBAK

Copy new rules to the location
mv /tmp/rules/*_rules $RULESDIR

Let us explore how this script works. The following lines simply set some variables.

RULESDIR=/etc/snhort

RULESDIRBAK=/etc/snort/bak

WGETPATH=/usr/bin
RULESURI=http://www.snort.org/downloads/snortrules.tar.gz

The following three lines are used to go to /tmp directory, remove any existing directory
/tmp/rules and download the snortrules.tar.gz file from the URI specified by the
$RULESURI variable.

cd /tmp

107

rm -rf rules
$WGETPATH/wget $RULESURI

After downloading, you extract the rules files from snortrules. tar.gz file and then delete it
using the following two lines. The files extracted are placed in /tmp/rules directory.

tar -zxf snortrules.tar.gz
rm -f snortrules.tar.gz

The following line makes a backup copy of existing rules files, just in case you need the old copy
later on.

mv $RULESDIR/*_rules $RULESDIRBAK

The last line in the script moves new rules from /tmp/rules directory to the actual rules
directory /etc/snort where Snort can read them.

mv /tmp/rules/*.rules $RULESDIR

Make sure to restart Snort after running this script. If you have a start script like the one
described in Chapter 2, you can add a line at the end of the shell script to restart Snort.

/etc/init.d/snortd restart

You may also restart Snort using the command line.

3.9.2 The Sophisticated and Complex Method

This section provides information about the use of Oinkmaster found at
http://www.algonet.se/~nitzer/oinkmaster/. Oinkmaster is a tool to update Snort rule files. It is
written in Perl, so you must have Perl installed on your Snort machine to make this tool work. It
can be configured to download new rule files from the Internet, find out what rules need to be
updated and then updates them. If you have modified some standard rules according to your own
requirements, you can configure Oinkmaster not to update these customized rules. At the time of
writing this book, version 0.6 of this tool is available. By now updated versions may be available.
Oinkmaster is a Perl script and uses a configuration file to update the rules.

It is recommended that you use a temporary directory the first time you use this Perl script. |
have used /tmp/rules directory. When you use the following command, it will download all
rules, untar them and save all files in /7tmp/rules directory.

[View full width]

[rr@conformix]$./oinkmaster.pl -o /tmp/rules/

Downloading rules archive from
http://www._snort.org/dl/signatures/snortrules._tar.gz. ..

12:27:09 URL:http://www.snort.org/dl/signatures/snortrules.tar.gz
[79487/79487] -> "'/tmp

/oinkmaster.9875/snortrules.tar.gz”™ [1]

108

Archive successfully downloaded, unpacking... tar: rules/attack-
responses.rules: time

stamp 2002-07-14 13:10:24 is 348194 s in the future
tar: rules/classification.config: time stamp 2002-07-14 13:10:24 is 348194 s
in the future
tar: rules/sid-msg.map: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/x11.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/web-misc.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/web-iis.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/web-frontpage.rules: time stamp 2002-07-14 13:10:24 is 348194 s in
the future
tar: rules/web-coldfusion.rules: time stamp 2002-07-14 13:10:24 is 348194 s
in the future
tar: rules/web-cgi.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/web-attacks.rules: time stamp 2002-07-14 13:10:24 is 348194 s in
the future
tar: rules/virus.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/tftp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/telnet.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/sqgl.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/smtp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/shellcode.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/scan.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/rservices.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/rpc.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/porn.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/policy.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/netbios.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/misc.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/local .rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/info.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/icmp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/icmp-info.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future
tar: rules/ftp.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

109

tar: rules/finger.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/exploit.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/dos.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/dns.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/ddos.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/bad-traffic.rules: time stamp 2002-07-14 13:10:24 is 348194 s in
the future

tar: rules/backdoor.rules: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules/snort.conf: time stamp 2002-07-14 13:10:24 is 348194 s in the
future

tar: rules: time stamp 2002-07-14 13:10:24 is 348194 s in the future

done.

Disabling rules according to ./oinkmaster.conf... O rules disabled.
Comparing new Files to the old ones... done.

[***] Results from Oinkmaster started Wed Jul 10 12:25:37 2002 [***]
[*1 Rules added/removed/modified: [*]
[+++] Added: [+++]

-> File "tftp.rules™:

alert udp any any -> any 69 (msg:"TFTP GET shadow'; content: ""]0001]";
offset:0;
depth:2; content:"shadow'; nocase; classtype:successful-admin; sid:1442;
rev:1;)

alert udp any any -> any 69 (msg:"TFTP GET passwd'; content: ""]0001]";
offset:0;
depth:2; content:"passwd'; nocase; classtype:successful-admin; sid:1443;
rev:1;)

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP parent
directory"; content:"
..""; reference:arachnids,137; reference:cve,CVE-1999-0183; classtype:bad-
unknown; sid:519;
rev:1;)

[/771 Modified active: [/771

-> File "tftp.rules':

Old: alert udp $EXTERNAL_NET any -> $HOME_NET 64 (msg:"TFTP Put';
content:" |00
02]"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype
bad-unknown; sid:518; rev:3;)

New: alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Put';
content:" |00
02]"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype
bad-unknown; sid:518; rev:3;)

110

[*1 Non-rule lines added/removed: [*]
None.

[*1 Added files: [*]
None.

The tool gives you a detailed report of actions taken during the update process. You can test this
by deleting and modifying some rules and running the tool again. The following is a partial
output seen when Oinkmaster adds and updates some rules.

[View full width]

Comparing new Files to the old ones... done.
[***] Results from Oinkmaster started Wed Jul 10 12:25:37 2002 [***]
[*1 Rules added/removed/modified: [*]

[+++] Added: [+++]

-> File "tftp.rules™:

alert udp any any -> any 69 (msg:"TFTP GET shadow'; content: ""]0001]";
offset:0;
depth:2; content:"shadow'; nocase; classtype:successful-admin; sid:1442;
rev:1;)

alert udp any any -> any 69 (msg:"TFTP GET passwd'; content: ""]0001]";
offset:0;
depth:2; content:"passwd'; nocase; classtype:successful-admin; sid:1443;
rev:1;)

alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP parent
directory"; content:"
..""; reference:arachnids,137; reference:cve,CVE-1999-0183; classtype:bad-
unknown; sid:519;
rev:1;)

[/771 Modified active: [/771

-> File "tftp.rules":

Old: alert udp $EXTERNAL_NET any -> $HOME_NET 64 (msg:"TFTP Put'";
content:" |00
02]"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype
-bad-unknown; sid:518; rev:3;)

New: alert udp $EXTERNAL_NET any -> $HOME_NET 69 (msg:"TFTP Put';
content:" |00
02]"; offset:0; depth:2; reference:cve,CVE-1999-0183;
reference:arachnids,148; classtype
-bad-unknown; sid:518; rev:3;)

[*1 Non-rule lines added/removed: [*]
None.

[*1 Added files: [*]
None.

111

The script uses a configuration file where many options can be configured. Specifically you can
configure the following in the configuration file oinkmaster.conf:

URL of the location from where it downloads the Snort rules. By default this URL is
http://www.snort.org/downloads/signatures/snortrules.tar.qz or

http://www.snort.org/downloads/snortrules.tar.gz. This is configured using the url

keyword in the configuration file.

Files to be updated. By default files ending with _rules, .config, .conf, .txt and .map
are updated and all other files are ignored. This is done using the update_files keyword.
Files to be skipped when updating rules. This is done using the skipfile keyword. You

can use as many skipfiles lines as you like. This option is useful when you have
customized rules in some files. When you skip these files, your customized rules will not
be overwritten during the update process.

You can disable certain rules permanently using the disablesid keyword in the
configuration file. The tool will not update these rules during the update.

Please use the README and INSTALL files that come with the tool. You can use this tool from
a cron script to periodically update your rule set.

3.10 Default Snort Rules and Classes

Snort comes with a rich set of rules. These rules are divided into different files. Each file
represents one class of rules. In the source code distribution of Snort, these files are present
under the rules directory in the source code tree. The following is a list of the rule files in Snort
1.9.0 distribution:

attack-responses.rules
backdoor.rules
bad-traffic.rules
chat.rules
ddos.rules
deleted.rules
dns.rules
dos.rules
experimental .rules
exploit.rules
finger.rules
ftp.rules
icmp-info.rules
icmp.rules
imap.rules
info.rules

local .rules
Makefile
Makefile.am
Makefile.iIn
misc.rules
multimedia.rules
mysqgl.rules
netbios.rules

112

nntp.rules
oracle.rules
other-ids.rules
p2p-rules
policy.rules
pop3.rules
porn.rules
rpc.rules
rservices.rules
scan.rules
shellcode.rules
smtp.rules
snmp.rules
sql.rules
telnet.rules
tftp.rules
virus.rules
web-attacks.rules
web-cgi.rules
web-client.rules
web-coldfusion.rules
web-frontpage.rules
web-1is.rules
web-misc.rules
web-php.rules
x11l.rules

For example, all rules related to X-Windows attacks are combined in x11.rules file.

[View full width]

(C) Copyright 2001,2002, Martin Roesch, Brian Caswell, et al.
All rights reserved.
$1d: x11l.rules,v 1.12 2002/08/18 20:28:43 cazz Exp $

alert tcp $EXTERNAL_NET any -> $HOME_NET 6000 (msg:"'X11 MIT Magic Cookie
detected; flow

sestablished

; content: "MIT-MAGIC-COOKIE-1"; reference:arachnids,396;
classtype:attempted-user; sid

:1225; rev:3;

)
alert tcp $EXTERNAL_NET any -> $HOME_NET 6000 (msg:*'X11 xopen';
flow:established; content:

""]6c00 Ob
00 0000 0000 0000 0000]*; reference:arachnids,395; classtype:unknown;
sid:1226; rev:2;)

Similarly, each file contains rules specific to a particular class. The dns. rules file contains all

rules related to attacks on DNS servers, the telnet.rules file contains all rules related to
attacks on the telnet port, and so on.

113

3.10.1 The local.rules File

The local . rules file has no rules. This is meant to be used by Snort administrator for
customized rules. However, you can use any file name for your own customized rules and
include it in the main snort.conf file.

3.11 Sample Default Rules

You have learned the structure of Snort rules and how to write your own rules. This section lists
some predefined rules that come with Snort. All of the rules in this section are taken from the
telnet.rules file. Let us discuss each of these to give you an idea about rules that are used in
production systems.

3.11.1 Checking su Attempts from a Telnet Session

The first rule generates an alert when a user tries to su to root through a telnet session. The rule is
as shown below:

[View full width]

alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg:"TELNET Attempted SU
from wrong

group'; flow:
from_server,established; content:'"to su root'"; nocase; classtype:attempted-
admin; sid:715;

rev:6;)

There are a number of things to note about this rule. The rule generates an alert and applies to
TCP packets. Major points are listed below:

e The variable STELNET_SERVERS is defined in snort.conf file and shows a list of
Telnet servers.

e Port number 23 is used in the rule, which means that the rule will be applied to TCP
traffic going from port 23. The rule checks only response from Telnet servers, not the
requests.

e The variable $SEXTERNAL_NET is defined in the snort.conf file and shows all
addresses which are outside the private network. The rule will apply to those telnet
sessions which originate from outside of the private network. If someone from the
internal network starts a Telnet session, the rule will not detect that traffic.

e The flow keyword is used to apply this rule only to an established connection and traffic
flowing from the server.

e The content keyword shows that an alert will be generated when a packet contains "to su
root".

e The nocase keyword allows the rule to ignore case of letters while matching the content.

e The classtype keyword is used to assign a class to the rule. The attempted-admin class is
defined with a default priority in classification.config file.

e TheruleID is 715.

114

e The rev keyword is used to show version of the rule.
3.11.2 Checking for Incorrect Login on Telnet Sessions

The following rule is similar to the rule for checking su attempts. It checks incorrect login
attempts on the Telnet server port.

[View full width]

alert tcp $TELNET_SERVERS 23 -> $EXTERNAL_NET any (msg:"TELNET login
incorrect'; content

:"Login inco

rrect”; flow:from_server,established; reference:arachnids,127; classtype:bad-
unknown; sid

:718; rev:6;)

There is one additional keyword used in this rule which is "reference: arachnids, 127". This is a
reference to a web site where you can find more information about this vulnerability. The URLs
for external web sites are placed in the reference.config file in the Snort distribution. Using
the information in reference.config, the URL for more information about this rule is
http://www.whitehats.com/info/IDS=127. 127 is the ID used for searching the database at the
arachnids web site.

3.12 Writing Good Rules

There is a large list of predefined rules that are part of Snort distribution. Looking at these rules
gives you a fairly good idea of how to write good rules. Although it is not mandatory, you should
use the following parts in the options for each rule:

e A message part using the msg keyword.

e Rule classification, using the classification keyword.

e Use a number to identify a rule with the help of the sid keyword.

o If the vulnerability is known, always use a reference to a URL where more information
can be found using the reference keyword.

e Always use the rev keyword in rules to keep a record of different rule versions.

In addition, you should always try to write rules that are generalized and are able to detect
multiple variations of an attack. Usually bad guys use the same tools with little modifications for
different purposes. Good rules can and should be able to detect these variations.

3.13 References

1. Classless Inter-Domain Routing or CIDR. RFC 1519 at http://www.rfc-
editor.org/rfc/rfc1519.txt

2. Transmission Control Protocol RFC 793 at http://www.rfc-editor.org/rfc/rfc793.txt

User Datagram Protocol RFC 768 at http://www.rfc-editor.org/rfc/rfc768.txt

4. The nmap at it web site http://www.nmap.org

w

115

5. The Internet Protocol RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt
6. The Internet Control Message Protocol at http://www.rfc-editor.org/rfc/rfc792.txt
7. Assigned Numbers RFC 1700 at http://www.rfc-editor.org/rfc/rfc1700.txt
8. Oinkmaster at http://www.algonet.se/~nitzer/oinkmaster/
9
1

. Open NMS at http://www.opennms.org
0. Internet Corporation for Assigned Names and Numbers (ICANN) at
http://www.icann.org
11. The arachnids web site at http://www.whitehats.com/info/IDS
12. The securityfocus mailing list archive at http://online.securityfocus.com/archive/1

116

Chapter 4. Plugins, Preprocessors and
Output Modules

Preprocessors and output modules are two important parts of Snort architecture. Preprocessors
process received data packets before rules are applied to them. Output modules control output
generated from Snort's detection mechanism. The flow of a packet through Snort is shown in
Figure 4-1 where a packet is captured and then passed through preprocessors first. After that, the
packet goes to the Snort detection engine where Snort rules are applied on the packet. As a result
of application of Snort rules, if an alert or log message is generated, output processors or plug-ins
operate on that output. The output of configured output modules is then used by the security
administrators.

Figure 4-1. Simplified block diagram for Snort.

Input plugins are
applied here to detect
some attacks and
maodify captured data

This is the network being
maonitored. Snort captures packets
from the network interface
attached to this network

\ . J

COutput plugins

The main Stow

forimat Cutput . .
. . detection engine
from the detection ..
) applies Snott rules
and log it

A

A
User looks at Snort
m log data
=

==

—al

Snort allows you to select which preprocessors and output modules should be enabled. From a
user standpoint, this is done through the Snort configuration file snort.conf. Preprocessors and
Output modules are also called plug-ins in some literature. So for the sake of this book "input
plug-in", "input module™ and "preprocessor” mean the same thing. Similarly, "output plug-in"

117

and "output module™ mean the same thing. This chapter provides information about these
components and their internal working. This information will help you write good rules for Snort.

4.1 Preprocessors

When a packet is received by Snort, it may not be ready for processing by the main Snort
detection engine and application of Snort rules. For example, a packet may be fragmented.
Before you can search a string within the packet or determine its exact size, you need to
defragment it by assembling all fragments of the data packet. The job of a preprocessor is to
make a packet suitable for the detection engine to apply different rules to it. In addition, some
preprocessors are used for other tasks such as detection of anomalies and obvious errors in data
packets. A detailed description of available preprocessors will show how they work.

During the installation process, you can compile support of different preprocessors into Snort.
Configuration parameters for different preprocessors (also called input plug-ins and input
modules) are present in the snort.conf file. Using the file, you can enable or disable different
preprocessors.

All enabled preprocessors operate on each packet. There is no way to bypass some of the
preprocessors based upon some criteria. If you have enabled a large number of preprocessors,
you may slow down Snort detection process. Therefore you should be careful when enabling
preprocessors.

All preprocessors are enabled in the Snort configuration file using the preprocessor keyword.
The general format of enabling a preprocessor is as follows:

preprocessor <name of preprocessor>[: parameters]

The name of the preprocessor follows the preprocessor keyword. For example, the following
line in snort.conf file enables frag2 preprocessor:

preprocessor frag2

Usually preprocessors also accept parameters to configure different options for the preprocessors.
These parameters are usually optional. Mandatory parameters will be specified explicitly in this
text. Widely used preprocessors are discussed next.

You can write your own preprocessors. The information is available in README.PLUGINS in

the doc directory of Snort source code. You can also find sample code in the templates directory
of the source code tree.

4.1.1 HTTP Decode

The Hyper Text Transfer Protocol (HTTP) allows intrusion detection systems to use hexadecimal
characters in URI to defeat known attacks. For example, this can be done by inserting something
like %3A%2F%2F in the URI to replace :// characters. The HTTP decode preprocessor

118

normalizes the HTTP requests so that they can be processed properly by the detection engine.
You can use a list of ports used by HTTP servers or proxy servers as an argument to the
preprocessor. The following line in the configuration file will apply HTTP decode for packets
coming to ports 80, 8080, 443.

preprocessor http_decode: 80 8080 443

A large number of attacks on web servers are carried by obfuscating URI characters using
hexadecimal numbers in the URI. The HTTP decode blocks any such attempts by converting
them to the actual URI. For example, if you have written a Snort rule to attempt access to
"/wwwhboard/passwd.txt", an attacker can defeat the rule by using hexadecimal characters in the
request. So if the attacker sends a request to get URI "%2Fwwwhboard%2Fpasswd.txt", the Snort
rule will not detect the attack because the rule is looking for "/wwwhboard/passwd.txt". However,
if you are using HTTP decode preprocessor, this attempt can detected.

4.1.2 Port Scanning

Port scanning is a process of finding out which ports are open on a particular host or all hosts on
a network. The first step in any intruder activity is usually to find out what services are running
on a network. Once an intruder has found this information, attacks for known vulnerabilities for
these services are tried. The portscan preprocessor is designed to detect port scanning activities.
The preprocessor can be used to log the port scanning activities to a particular location in
addition to standard logging. Hackers can use multiple port scanning methods. Refer to man
pages or documentation of the nmap utility (http://www.nmap.org/) to learn more about port
scanning methods. The nmap utility is a widely used tool for port scanning.

The following is the general format of the preprocessor used in the snort.conf file.

preprocessor portscan: <address> <ports> <time period> <file>
There are four arguments to the preprocessor.

e The address range of IP addresses to monitor is a single IP address or a network address.
The range is specified using the CIDR block.

e The number of ports accessed within a certain time period can be specified. For example,
a number 5 means that if five ports are scanned within the time period specified, an alert
is generated.

e The time period is the number of seconds that defines the time period used for threshold.

e The path of the file name where the activity should be logged.

The following line in the Snort configuration file is used to detect port scanning on network
192.168.1.0/24 and to log activity in /var/log/snort/portscan. log file.

preprocessor portscan: 192.168.1.0/24 5 10 \
/var/log/snort/portscan.log

119

In the example, number 5 is the number of scanning attempts and number 10 is the time period.
If five port scan attempts are detected within ten seconds, the preprocessor will generate an alert.

The port scanning activity is detected both for TCP and UDP ports. The preprocessor is able to
detect both normal and stealth port scans. For information on stealth port scans, please see the
nmap web site. A brief description of port scanning methods is presented below:

e TCP connect port scanning. In this method, the attack tries to connect to a number of
ports using standard TCP connect methods. If connection is established, it shows the port
is open.

e The SYN scan method sends a TCP packet to a port with SYN flag set. In response the
attacker looks for a TCP packet with both SYN and ACK flags set. If the packet is
received, the port is open. However if a TCP packet with RST flag set is received, it
shows the port is closed.

e NULL port scanning method, FIN port scanning, and XMAS port scanning methods are
almost similar. A TCP packet is sent and either a RST packet is received or no packet is
received. If a RST packet is received, the port is closed. If no packet is received, there is a
probability that the port is open.

e Inthe UDP port scanning method, UDP packets are sent. If an ICMP port unreachable
packet is received, the port is closed. Otherwise there is a probability that the port is open.

You can also use another preprocessor in conjunction with this preprocessor. This preprocessor
is portscan-ignorehosts, which can be used to ignore some hosts if any port scanning activity is
detected from them. The following line in the configuration file will ignore two hosts,
192.168.1.10 and 192.168.1.13.

preprocessor portscan-ignorehosts: 192.168.1.10/32 \
192.168.1.13/32

We have used 32 in the CIDR block number to specify a single host. The portscan-ignorehosts
preprocessor is useful when you use some host on your own network for periodic vulnerability
assessment.

4.1.3 The frag2 Module

This preprocessor does IP packet defragmentation. Old versions of Snort used another
preprocessor named defrag. The frag2 preprocessor uses a splay tree algorithm, which is a self-
organizing data structure. For configuration, use and administration of Snort, you need not
understand this algorithm.

With frag2, you can configure timeout and memory limits for packet defragmentation. By default,
the preprocessor uses 4 MB of memory and a 60-second timeout period. If a packet assembly is
not successful within this time period, previously collected fragments are discarded. The
following command enables the preprocessor with default values.

preprocessor frag2

120

The following command configures the preprocessor with 2MB memory and a timeout period of
30 seconds.

preprocessor frag2: 2097152, 30

On high-speed networks, you should use large amounts of memory since a large number of data
packets may be fragmented. RFC 791 describes the fragmentation and reassembly process in
detail. The link to this RFC is found at the end of the chapter.

4.1.4 The stream4 Module

Stream4 is a replacement for the Stream module used in older versions of Snort. It provides two
basic functions:

1. TCP stream reassembly
2. Stateful inspection

You must configure two preprocessors in the snort.conf file for Stream4 to work properly.
These modules are "stream4™ and "stream4_reassemble." Both of these take a number of
arguments. If you don't specify an argument, a default value is used instead. The general format
of stream4 preprocessor is as follows:

preprocessor stream4: [noinspect], [keepstats], \
[timeout <seconds>], [memcap <bytes>], [detect_scan], \
[detect_state]

Here is a brief explanation of the arguments to the preprocessor and their default values:

noinspect Turns off stateful inspection (default: ACTIVE)

keepstats Records session summary in session. log file (default: INACTIVE)
timeout Timeout for keeping a stream in active state (default: 30 seconds)
memcap Maximum amount of memory used by the module (default: 8 MB)
detect_scan Detects port scan activity (default: INACTIVE)

detect_state problems Detects miscellaneous problems related to TCP streams (default:
INACTIVE)

The general format of the stream4_reassemble preprocessor is as follows:

preprocessor stream4_reassemble: [clientonly],
[serveronly],[noalerts], [ports<portlist>]

Here is a brief explanation of arguments to stream4_reassemble preprocessor:

121

clientonly Reassembles client side stream data packets.
serveronly Reassembles server side stream data packets.
noalerts Don't alert for insertion or evasion type attacks.

ports List of ports for which streams will be assembled. The port numbers should be
separated by a space character. The keyword "all" will enable reassembly on port
numbers 21 (FTP), 23 (Telnet), 25 (SMTP), 53 (DNS), 80 (HTTP), 110 (POP3),
111, 143, and 513. The port feature is very useful if you want to enable reassembly
for only a few services. It saves CPU time.

Snort-type attacks can be detected and/or ignored with this preprocessor. For more information,
see http://www.sec33.com/sniph/.

4.1.5 The spade Module

Detailed information about Statistical Packet Anomaly Detection Engine (SPADE) is available at
http://www.silicondefense.com/software/spice/index.htm. It is used to detect general packet
anomalies in IP packets and a number of preprocessor keywords are associated with it. They are
listed in commented form in the default snort.conf configuration file that comes with Snort
distribution. SPADE keeps a record of history data and uses threshold values to report anomalies.
For a detailed discussion, please see the README and Usage links on the web site mentioned
above.

You should keep in mind some efficiency and memory requirements for SPADE. It can take a lot
of memory to keep SPADE's statistical data and significant processing power may be required on
high-load networks.

4.1.6 ARP Spoofing

Address Resolution Protocol (ARP) is used to find a MAC address when an IP address is known.
ARP is needed when a host wants to send an IP packet to another host on the local network. The
sending host broadcasts an ARP packet on the network asking, "Who has this IP address?" The
host who has that IP address will respond with its MAC address. After that, the sending host will
send the data packet (usually called a frame at the link layer level) to the destination host.

The ARP protocol is used by many people for various attacks, sniffing and spoofing. For
example, see the dsniff package at http://www.monkey.org/~dugsong/dsniff/ which exploits the
ARP. By spoofing, someone can redirect network traffic for a host to some other location.

The arpspoof preprocessor detects anomalies in ARP packets. Specifically it does the following:

o For all ARP requests, if source MAC address and sender's MAC address are different, an
alert is generated. If the source MAC address in the packet does not match the MAC
address associated with source IP address, then an alert is generated. For details on ARP
packet header, refer to Appendix C.

122

e For ARP replies, source MAC address is compared to sender's MAC address. Similarly,
destination MAC address is compared to receiver's MAC address. An alert is generated if
these entries mismatch.

e For unicast ARP requests, if destination MAC address is not the broadcast address
(FF:FF:FF:FF:FF:FF), an alert is generated. To check this anomaly, you need to place a
line in snort.conf file as "preprocessor arpspoof: -unicast”.

e You can pre-populate MAC Address/IP Address pairs in Snort internal cache. The
preprocessor will compare these pre-populated entries with information in the received
ARP packets. In case of mismatch, an alert will be generated. For example, if the MAC
address for a particular IP address in ARP replies does not match the pre-populated pair,
an alert is generated.

The following entry in the Snort configuration file (snort.conf) will configure this preprocessor
and will detect unicast anomalies:

preprocessor arpspoof: -unicast

The following line adds an IP address and MAC address pair which can be used later on to detect
ARP spoofing attempts.

preprocessor arpspoof _detect host: 192.168.1.13 \
34:45:fd:3e:a2:01

If in any ARP packet these two addresses don't match, an alert will be generated. You can use
multiple lines in the configuration file to create many similar pairs.

4.2 Output Modules

Output modules are used to control the output from Snort detection engine. By default, the
output from alerts and logs go into files in the /var/log/snort directory. Using output modules,
you can process output and send output messages a number of other destinations. Commonly
used output modules are:

e The database module is used to store Snort output data in databases.

e The SNMP module can be used to send Snort alerts in the form of traps to a management
server.

e The SMB alerts module can send alerts to Microsoft Windows machines in the form of
pop-up SMB alert windows.

e The syslog module logs messages to the syslog utility. Using this module you can log
messages to a centralized logging server.

e You can also use XML or CSV modules to save data in XML or comma separated files.
The CSV files can then be imported into databases or spreadsheet software for further
processing or analysis.

123

Output modules can be defined in the Snort configuration file and some of them can also be
configured on the command line as well. The general format for defining the output module
inside the configuration file is as follows:

output <module_name>[: arguments]

For example, if you want to log messages to MySQL database called "snort" using database user
name "rr" and password "rr" located on the same machine where Snort is running, you use the
following line in snort.conf file.

output database: log, mysql, user=rr password=rr \
dbname=snort host=localhost

However when you use an output module in the configuration file, alerts will not go into the alert
file. Once you place this line in the snort. conf file, all alerts will go into the MySQL database.
There are ways to send alerts to multiple destinations.

NOTE

In addition to the above line, you also need to configure MySQL database and create tables.
Discussion about this process is the subject of the next chapter.

Another example of using output modules is as follows. This line in the snort. conf file will
cause alerts to be sent as SMB pop-up windows to a list of hosts located in the
workstation. list file.

output alert_smb: workstation.list

Sometimes you may want to send alerts to multiple locations. Defining your own action using
the ruletype keyword is a good idea. For example, the following lines in the snort.conf file will
define an action type called "smb_db_alert" that will cause alerts to be sent to both the database
and SMB pop-up windows for rules that use this action type.

ruletype smb_db alert

{
type alert

output alert_smb: workstation.list
output database: log, mysql, user=rr password=rr \
dbname=snort host=localhost

}

The following rule uses this new action type. Alerts generated by this rule will go to MySQL
database as well as to the Windows machine in the form of pop-up windows.

smb_db_alert icmp any any -> 192.168.1.0/24 any \
(fragbits: D; msg: "Dont Fragment bit set';)

124

You can also use command line options with some output modules. For example, you can use -s
option to log alerts to Syslog.

4.2.1 The alert_syslog Output Module

Syslog is a system logging daemon available on almost all UNIX systems. It uses a configuration
file 7etc/syslog.conf where you can define different parameters to determine what happens
when a message for a defined facility is received. A detailed discussion of Syslog is beyond the
scope of this book and you should refer to the manual pages of syslogd and syslog.conf.

The alert_syslog module allows you to send alerts to the syslog facility. The Syslog daemon
can also be used to forward alerts to some other host as well if you need centralized logging. The
following is the general format for using this module.

output alert_syslog: <facility> <priority> <options>
Facility names that can be used with this module are:

LOG_AUTH
LOG_AUTHPRIV
LOG_DAEMON
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCALS3
LOG_LOCAL4
LOG_LOCALS5
LOG_LOCALS6
LOG_LOCAL7
LOG_USER

Priorities that are available with this module are:

LOG_EMERG
LOG_ALERT
LOG_CRIT
LOG_ERR
LOG_WARNING
LOG_NOTICE
LOG_INFO
LOG_DEBUG

Note that LOG_EMERG is the highest priority and LOG_DEBUG is the lowest priority. Options
that you can use with this module are:

« LOG_CONS

125

« LOG _NDELAY
« LOG_PERROR
« LOG PID

Note that you have to configure Syslog daemon on your host to properly utilize this module. On
Linux systems, read the manual pages for sysklogd for a detailed discussion of how to configure
and use the daemon. The configuration is done through the use of /etc/syslog.conf file on
UNIX systems. A typical syslog.conf file on RedHat Linux 7.3 system follows. As you can see
from this file, a log file is defined for each type of facility. Most of the messages go into
/var/log/messages files.

Log all kernel messages to the console.
Logging much else clutters up the screen.
kern.* /dev/console

Log anything (except mail) of level info or higher.
Don"t log private authentication messages!
*_info;mail _none;news.none;authpriv.none;cron.none
/var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail . * /var/log/maillog
Log cron stuff

cron.* /var/log/cron

Everybody gets emergency messages
*_emerg *

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log

local7.* /var/log/boot.log

#

INN

#

news.=crit /var/log/news/news.crit
news.=err /var/log/news/news.err
news.notice /var/log/news/news.notice

If you want to send different types of alerts using different facilities or priorities, you can define
your own actions using the ruletype keyword as mentioned earlier. After defining these rule
types, you can use them in your rules as actions. As you will remember from previous
discussions, the first word in each rule is the action part.

126

4.2.2 The alert_full Output Module

The alert_full module logs full alert messages in a file. The following line will log all alert
messages to alert_detai led file under the Snort logging directory.

output alert_full: alert detailed

However keep in mind that full logging has its own disadvantages as well. Especially in high-
speed networks, enabling full alerts consumes a significant amount of time to log data into a file,
causing some packets to be ignored by the detection engine.

Note that as mentioned earlier, you can log messages to multiple destinations using a new action
type. The following lines in snort.conf file define an action type "multi". When this action
type is used in any rule, the message will be sent as SMB pop-up window on hosts listed in
workstation. list file as well as to a file alert_detai led.

ruletype multi

type alert
output alert_smb: workstation.list
output alert_full: alert _detailed

}
4.2.3 The alert_fast Output Module

Like alert_full, alert_fast also takes as an argument a file name for storing data. It is fast
compared to full alerting. Packet headers are not saved in the alert file. The following line in the
snort.conf file enables one-line alert messages to be stored in alert_quick file.

output alert_fast: alert_quick
This mode is useful for high-speed intrusion detection applications of Snort.
4.2.4 The alert_smb Module

SMB alerts are sent to Microsoft Windows-based workstations using the smbclient program
which is part of the SAMBA client package on Linux machines. To send these alerts, the
smbclient must be present in the PATH variable.

SMB alerts are displayed on Windows machines as pop-up windows as shown in Figure 4-2. A
list of workstations should be present in a file that is provided as an argument to the output
module. The following line in snort.conf file will cause alert messages to be sent to
workstations listed in file workstation. list.

output alert_smb: workstation.list

Figure 4-2. SMB alert display window.

127

Messenger Service El

Message from Snort to rr-laptop on 7/25/2002 10:44:04 PM

[**] Donk Fragment bit set [*+]
07/21-21:1%:33. 864866 192.168.1.2-=192.168.1.100

Each workstation name should be listed in workstation. list file on a separate line. Note that
these are the SMB names, not IP addresses or DNS hostnames. The SMB names of workstations
are configured in Control Panel on Windows machines. The smbclient program resolves these
SMB names by itself.

You have to compile the SMB alert support when building Snort using the configure script. A
typical line to build this support is:

./configure --prefix=/opt/snort --enable-smbalerts

Refer to Chapter 2 for more information about how to compile Snort. The messenger service
must be enabled on the Windows system for pop-up windows to be displayed.

4.2.5 The log_tcpdump Output Module

This module is used to store alert data in a tcpdump format file that can be viewed later on using
tcpdump or some other tool. This method is quick for heavily loaded networks where you want
to offload processing from the Snort system and analyze data using some other mechanism.
Following is the general format for using this module in snort. conf file.

output log_tcpdump: <filename>

Typical entries in the snort.conf file may look like the following:

output log tcpdump: /var/log/snort/snort_tcpdump.log

In Snort 1.8 and older, Month, Data and Time are pre-pended to the file name so that you can
have multiple files every time you restart Snort. In Snort 1.9, the seconds counter® is appended
to the file name. Each time you start Snort, a new file is created. Some typical names of files
created by using this line in snort.conf file in Snort 1.9 are:

BT fact, the time() function is used in Snort 1.9.0 to determine this number. For more information, use the "man 2 time" command in Linux.

snort_tcpdump.log-1039971287
short_tcpdump.log-1039971389

If you use the file command to determine the type of the files created by Snort, an output like the
following will be displayed.

128

[root@conformix]# file /var/log/snort/
snort_tcpdump.log.1039971287
/var/log/snort/snort_tcpdump.log.-1039971287: tcpdump capture file
(little-endian) - version 2.4 (Ethernet, capture length 1514)
[root@conformix]#

This output shows that this file is in rcpdump format. Now you can display the contents of this
file (the captured data) using the tcpdump command as follows:

[View full width]

[root@conformix]# tcpdump -v -r /var/log/snort/snort_tcpdump.log.1039971287
11:55:03.163301 192.168.1.1.1901 > 239.255.255.250.1900: [Judp sum ok] udp
269 (ttl 150,

id 0, len 297)
11:55:03.166078 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok] udp
325 (ttl 150,

id 1, len 353)
11:55:03.168592 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok] udp
253 (ttl 150,

id 2, len 281)
11:55:03.170912 192.168.1.1.1901 > 239.255.255.250.1900: [Judp sum ok] udp
245 (ttl 150,

id 3, len 273)
11:55:03.173415 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok] udp
289 (ttl 150,

id 4, len 317)
11:55:03.175796 192.168.1.1.1901 > 239.255.255.250.1900: [Judp sum ok] udp
265 (ttl 150,

id 5, len 293)
11:55:03.178429 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok] udp
319 (ttl 150,

id 6, len 347)
11:55:03.181288 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok] udp
317 (ttl 150,

id 7, len 345)
11:55:03.183845 192.168.1.1.1901 > 239.255.255.250.1900: [Judp sum ok] udp
321 (ttl 150,

id 8, len 349)
11:55:03.186581 192.168.1.1.1901 > 239.255.255.250.1900: [udp sum ok] udp
313 (ttl 150,

id 9, len 341)
[root@conformix]#

This is especially useful if you want to create log files in binary format and then use tcpdump to
analyze the log files later.

4.2.6 The XML Output Module

The Simple Network Modeling Language (SNML) is available for exporting Snort alerts so they
can be read and interpreted by any XML-based interpreter or browser. Information about Snort
XML plug-in is available at http://www.cert.org/kb/snortxml/. At the time of writing this book,
version 0.2 of SNML DTD is available from this web site and is also available in Appendix E.

129

Using this plug-in, you can save XML data in a file on the local machine or send it to a web
server using HTTP or HTTPS protocols.

General format of using XML output plug-in is as follows:

output xml: [log | alert], [parameter list]

You can use either log or alert option with XML module. In case of alert, only alert messages
will be logged. Other parameters that can be used with this plug-in are listed in Table 4-1.

Table 4-1. Parameters Used with XML Module

Parameter Description
File Stores data to an XML file.

Protocol ~ Logs message to some other host using that protocol. Important protocols are HTTP,
HTTPS, and TCP. When you use HTTP protocol, you also need to specify a file
parameter. Data will be logged to the HTTP server using the POST method in the
specified file. If you want to use HTTPS protocol, you also need to provide file,
cert, and key parameters for secure logging. If you use TCP protocol, a server must
be listening to a parrot specified with port parameter.

Host Defines remote host where data will be logged.

Port Defines the port number on the remote host where data will be logged. Default port
numbers for HTTP, HTTPS, and TCP are 80, 443, and 9000 respectively.

Cert This is the certificate to be used with HTTPS protocol. It is X.509 client certificate.

Key The client private key.

Ca The server certificate used for authentication.

Server The Common Name or CN for X.509 certificate.

Note that XML output is important for much web application development and for integrating
Snort into such systems. Some Snort XML parsers exist, including ACID-XML at
http://www.maximumunix.org, although these are still in their infancy.

4.2.6.1 Examples
Logging to a file "xmlout" on the local host:
output xml: log, file=xmlout

The date and time will be appended to the name of the file so that data can be saved for multiple
Snort sessions.

Logging to a file "xmlout" on host snort.conformix.com using HTTP protocol:

130

output xml: alert, protocol=http \
host=snort.conformix.com File=xmlout

Logging to a file "xmlout" on host snort.conformix.com using HTTPS protocol:

output xml: alert, protocol=https \
host=snort.conformix.com File=xmlout cert=conformix.crt \
key=conformix.pem ca=ca.crt server=Conformix_server

Logging to a TCP server running on host snort.conformix.com and listening to port number 5555:

output xml: alert, protocol=tcp \
host=snort.conformix.com port=5555

Typical entries present in the output XML file:

[View full width]

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE snort-message-version-0.2>

<file>

<event version="1.0">
<sensor encoding="hex" detail="full">
<interface>ethO</interface>
<ipaddr version="4">192_.168.1.2</ipaddr>
<hostname>conformix.conformix.net</hostname>
</sensor>
<signature>ICMP Packet with TTL=100</signature>
<timestamp>2002-07-23 17:48:31-04</timestamp>
<packet>
<iphdr saddr="192.168.1.100" daddr="'192.168.1.2" proto="1" ver="4"
hlen="5" len="60"
1d=""37123" ttl="100" csum="519">
<icmphdr type="8" code=""0" csum=''23612">

<data>6162636465666768696A6B6C6D6EGF7071727374757677616263646566676869</data>
</icmphdr>
</iphdr>
</packet>
</event>
</file>

You need an XML parser and a DTD file to interpret data logged into the XML file. You can
also load data files in your XML enabled web browser as shown in Figure 4-3.

Figure 4-3. The XML output file in Microsoft Internet Explorer.

131

';lh ytmp Eest el - Microsnll ternet Pueplorar

| Ple Edt Viess Fawcbes fools sel

Q.0.18 @ &

% & @

| Address 8] D:eriest.ami i A
| Google - S ehvss Beeovror | domn | @it Qe - renons Bl e
W2 eisl (o [5]] Gsoomats @ it - 3¢ v - i s - il -
cixml yersion="1.0° encodng="UTF-8* 7>
<IDOCTYPE snort=mestage-veraan=0,.2 Wew Soovce for full doctype
= <hlax

- <évent vardon="1.0">
- cgensor ancoding="hex" datails"full*>
cintéface>athb: fintesfaces
<ipaddr versmon="4">192.168.1.2 < paddr>
choztnamesconformix.conformix. netl< hostnamis s
</ 5aN50M>
caignature=1CMP Packet with TTL= 100</signaturas

«timestamp=2002-07-23 17483 1-04< timestamp:
cpackots

id="3F 123" tl="100" crum="519">
cicmphdr type="8" code="0" csum="23612">

«/icmphdra
</ iphdrs
</packet>
eveEnl
o filps

- «iphdr saddr="192.168.1.100" daddr="192.168.1.2" proto="1" ver="4" hlen="5" len="60"

~datazGlBZ6ROAGSH66 FEEEILAGRGCADEEAFFOTIT2TATATSI6T 6162636465666 76069

< datas

o

J
T [wcompser

There are a few things that you can do in Internet Explorer with XML documents. For example,
if you want to hide the packet details, you can click on the hyphen character; all details for the
packet will be hidden and the hyphen character will be replaced by the plus character. This is
shown in Figure 4-4. To display the details again, you can click on the plus character.

Figure 4-4. Hiding details in Microsoft Internet Explorer.

132

2 0 kmp' Eestsoml - Microsolt Intermet Explorer 3 .-J.I].I il

i Fle Ede View Favorkes Tods e »w
y Al A L § - L]
Q.90 . x ®B % L % & € = [
Bk o Sop Ralrash Hexto Search Favorbed Meds Hisbary Mal Print Exit
Address Ip]r_:-ﬁl,rq;'.tﬁ.: armd ll ﬁn Links ™
Gu.-gl.cv| vI B Seanch web G5 thew! | D Info = [JlUn = * | Morton Antieeus L -
b Y [serch |- || (it Bockmarks @ myvahons -~ W vahoo! - d Fnance - [vahoot mst - »
CTHEE mrtraa ,)
[
| event varsion="1.0"
sensor ancoding="hex" detail="full"
zinterfacesathdinterface
ipaddr version="4">192_168.1.2</ipaddr
=hostname: conformix.conformix.net < hostname
sansor
signaturesICMP Packet with TTL= 100</sgnatures
timestamp>2002-07-23 17:48;31-04</timastamp=
+ cpacket
wvent
fila=
1
|
i
i
~ L.
| £l :mw &

The plus and the hyphen character can be clicked in all places on the XML document to hide or
reveal details about a particular section of the XML document. For more information on XML,
you can consult any of the available texts or go to the XML web site at http://www.xml.org.

4.2.7 Logging to Databases

Databases are used with Snort to store log and alert data. Logging data to files in the disk is fine
for smaller applications. However, keeping log data in disk files is not appropriate when you
have multiple Snort sensors or you want to keep historical data as well. Databases also allow you
to analyze data generated by Snort sensors. For example, if you want to find the top 15 alerts that
are generated most frequently, you can use SQL statements for the database. Finding the same
information from log files is difficult. Similarly, if you want to find the most active attackers in
the month of November 2002, it is very easy to find out that information from a database.

You can use multiple types of databases with Snort including Oracle and MySQL. Using the

database is discussed in detail in the next chapter. For the sake of completeness of discussion
about output modules, consider the following line.

133

output database: log, mysql, user=rr password=rr \
dbname=snort host=localhost

This line configures MySQL to be used as the database running on the same machine where
Snort is running. All messages are logged to the database named "snort” which you need to
create manually before you can start using it. Snort will access this database using user name "rr"
and password "rr". Note that rr is not a UNIX user, it is a database user. You have to create this
user name and password yourself as well. Refer to Chapter 5 for details about how to configure
MySQL database for use with Snort.

The general format for using the database is as follows:

output database: <log | alert>, <database type>, \
<parameter_list>

The database type is mysql, postgressgl, oracle and so on. List of parameters that can be used is

shown in Table 4-2. Parameters are separated with a space character in the configuration file
(snort.conf). Most of these parameters are optional.

Table 4-2. List of Parameters for the Database

Parameter Description
host Host where database server is running.
port Port number used by the database server.
dbname Name of the database.

user Name of the database user.

password Password for the user. If you don't want to use a password, you can omit this
parameter (a bad idea!).

sensor_name Name of the sensor used by Snort. This is useful when many Snort sensors are
logging to the database and later on you want to know which alert is related to a
particular sensor. This name is also used by tools like ACID to distinguish
different sensors.

detail You can use either full or fast detail. By default full detail is saved to the database.
encoding You can use ASCII, hex, or base64 encoding for data.

To enable support of databases, you need to compile Snort with database support enabled. The
following configure script enables MySQL database support in Snort.

./configure --prefix=/opt/snort --with-mysql=/usr/lib/mysql

Refer to Chapter 2 for details on how to build Snort.

134

4.2.8 CSV Output Module

Comma-separated text files are sometimes useful when you want to import data into other
software packages like databases and spreadsheets, e.g., Microsoft Excel. Using the CSV output
module, you can save output data to a CSV file. The general format of the CSV file is as follows:

output csv: <filename> <formatting options>

The file is created in the logging directory which is /var/log/snort by default. Formatting
options are used to define what information should be stored in the CSV file and in what order. If
you use the keyword "default™ in the formatting option, all parameters about the alert are stored
in the file.

output csv: csv_log default

The output file generated after using this line in snort. conf file is something like the following:

[View full width]

07/23-18:24:03.388106 ,ICMP Packet with

TTL=100, ICVMP,192.168.1.100,,192.168.1.2,,0:2:3F:33
:C6:98,0:E0:29:89:28:59,0x4A,,,,,,100,0,51367,60,20,8,0,,
07/23-18:25:51.608106 ,GET
matched,TCP,192.168.1.2,1060,192.168.10.193,,0:E0:29:89:28:59,0
16:25:5B:29:ED,0x189,***AP*** 0x55BCF404 ,0x8CBF42DD, ,0x16D0,64,0,35580,379,20
07/23-18:25:52.008106 ,GET

matched,TCP,192.168.1.2,1061,192.168.10.193, ,0:E0:29:89:28:59,0
16:25:5B:29:ED,0x1D0,***AP*** ,0x55628967 ,0x8D33FB74, ,0x16D0,64,0,63049,450, 20
07/23-18:25:52.478106 ,GET

matched,TCP,192.168.1.2,1061,192.168.10.193, ,0:E0:29:89:28:59,0
16:25:5B:29:ED,0x1D0, ***AP*** 0x55628B01,0x8D33FC1B, ,0x1920,64,0,63051,450,20
07/23-18:25:52.708106 ,GET
matched,TCP,192.168.1.2,1061,192.168.10.193,,0:E0:29:89:28:59,0
16:25:5B:29:ED,OX1EF, ***AP*** 0x55628C9B, 0x8D33FCC1, ,0x1D50,64,0,63053,481,20

Each line in the output consists of fields as listed in Table 4-3.

Table 4-3. CSV Options

Name Description
Timestamp Time stamp including date and time.

Msg Message which is taken from the msg option of the rule.
Proto Protocol.
Src Source IP address.

135

Name
Srcport
Dst
Dstport
ethsrc
ethdst
ethlen
tcpflags
tcpseq
tcpack
tcplen
tcpwindow
ttl
tos
id
dgmlen
iplen
icmptype
icmpcode
icmpid
icmpseq

You can use only a few of these options in the CSV file as required. The following line in
snort.conf will record only timestamp, msg, source, and destination IP addresses.

Table 4-3. CSV Options

Description

Source port number. No port number is present in ICMP packets.

Destination IP address.

Destination port.

Source Ethernet address.

Destination Ethernet address.

Length of Ethernet frame.

If the protocol is TCP, this part contains TCP flags.
TCP sequence number in TCP packets.
TCP acknowledgement number.

TCP length.

TCP window size.

TTL value in the IP header.

Type of Service field of IP header.
Packet ID.

Datagram length.

Length part in the IP header.

Type field in ICMP header.

Code part in ICMP header.

ID part of ICMP header.

ICMP sequence.

output csv: csv_log timestamp,msg,src,dst

The log entries will look like the following:

07/23-19:31:27.128106 ,GET matched,192.168.1.2,192.168.10.193
07/23-19:31:27.278106 ,GET matched,192.168.1.2,192.168.10.193

136

4.2.9 Unified Logging Output Module

Unified output is good for high-speed logging. You can have alerts and logs going into separate
files. The general format of these modules is as follows:

output alert _unified: filename <alert _file>, \
limit <max_size>

output log_unified: filename <log_file>, \
limit <max_size>

The size of the file is expressed in Mbytes. You should enable both alert and log files to keep a
complete record of data because the alert file does not contain detailed information about the
packets. The following is an example of enabling unified output from Snort. These two lines in
the snort.conf file enable unified output.

output alert_unified: filename unified_alert, limit 50
output log unified: filename unified log, limit 200

If no path is specified, the files are created in /var/log/snort directory. In the above example,
the alert file will not grow more than 50 MBytes and the maximum size of the log file will be
200 MBytes. The number of seconds as returned by the time() function are added at the end of
file name so that when you restart Snort, new files are created. Some typical names for alert and
log files are:

unified alert.1039992424
unified_log.1039992424

Unified log files are in binary format and you can use utilities to view these. For simple
hexadecimal display, you can use the hexdump utility on Linux. Barnyard is another tool for this
purpose. Refer to the Barnyard web site at http://sourceforge.net/projects/barnyard/. This tool is
discussed in Chapter 6 also.

4.2.10 SNMP Traps Output Module

The SNMP traps output module is very useful to send alerts as SNMP traps to a centrally
managed network operations center. Snort SNMP output module can generate both SNMPv2 and
SNMPv3 traps. The general format of SNMPv2 trap is as follows:

output trap_snmp: alert, <sensor_ID>, {trap]inform} \
-v <snmp_version> -p <port_number> <hostname> <community>

The following line sends SNMP version 2C traps to host 192.168.1.3 on port 162, which is the
standard port for SNMP traps. The community name used is "public".

output trap_snmp: alert, 8, trap -v 2c -p 162 \
192.168.1.3 public

137

You should modify community to a different string. "Public" is the default community name and
is known to everyone in the SNMP world. Refer to the example lines provided in snort.conf
file for SNMP version 3 traps.

To enable SNMP support in Snort, you have to compile it into Snort at the time you run the
configure script. The following configure script command line can be used for this purpose.

-/configure --prefix=/opt/snort --with-snmp --with-openssl

You also need to compile OpenSSL support in Snort. Refer to Chapter 2 for more information
about how to build Snort.

4.2.11 Log Null Output Module

This output plug-in causes alert entries not to be logged. For example, you can create a rule type

to send SNMP traps without logging these messages. However, | would not recommend using it.

You should always have a record of alerts so that if you want to take any action against intruders,
you have some evidence of the IDS activities.

4.3 Using BPF Fileters

Berkley Packet Filter (BPF) is a mechanism of filtering data packets at the data link layer level.
These filters are extensively used with the tcpdump program to filter data that you want to
capture. You can use BPF filters with Snort as well. When using BPF filters, Snort rules are
applied only to those packets that pass BPF filters. This way you can save some CPU time by not
applying Snort rules to packets that are of no interest. For example, the BPF filters can be used to
compare a particular byte from the starting offset of the IP header, TCP header or UDP header.

You can place BPF filters in a file and use that file on the command line when starting Snort. Let
us suppose you want to apply Snort only on packets for which the Type of Service (TOS) field in
the IP header is not equal to 0. The TOS field is the second byte in the IP header. For this
purpose, you can create a file bpf.txt with the following line in it:

ip[1] !'= O

Number 1 is the offset starting from the IP header part of the data packet. The offset starts from O,
so byte number 1 is the TOS field. For the structure of the IP header, refer to Appendix C.

After creating this file, you can use the following command line to start Snort to enable the filter.

snort -F bpf.txt -c /opt/snort/etc/snort.conf

Only those packets in which the TOS field has some value other than 0 will reach Snort detection
engine. A TOS value equal to 0 shows normal data traffic and any other value is used for high
priority data packets.

138

4.4 References

=

Classless Inter-Domain Routing or CIDR. RFC 1519 at http://www.rfc-
editor.org/rfc/rfc1519.txt

Transmission Control Protocol RFC 793 at http://www.rfc-editor.org/rfc/rfc793.txt
The nmap at it web site http://www.nmap.org

The Internet Protocol RFC 791 at http://www.rfc-editor.org/rfc/rfc791.txt

The Internet Control Message Protocol at http://www.rfc-editor.org/rfc/rfc792.txt
The nmap utility at http://www.nmap.org/

Simple Network Markup Language SNML info at http://www.cert.org/kb/snortxml/
Barnyard at http://sourceforge.net/projects/barnyard/

ACID_XML at http://www.maximumunix.org

10 XML at http://www.xml.org

11. Snot at http://www.sec33.com/sniph/

©CENOUIEWN

139

Chapter 5. Using Snort with MySQL

All systems need some type of efficient logging feature, usually using a database at the backend.
Snort can be made to work with MySQL, Oracle or any other Open Database Connectivity
(ODBC) compliant database. You already know from the discussion of output modules in the
previous chapter that you can save logs and alerts to a database. Logging to a database is very
useful for maintaining history data, generating reports and analyzing information. By using other
tools like Analysis Control for Intrusion Detection (ACID), discussed in the next chapter, you
can get very useful information from the database about attack patterns. For example, you can
get a report about the last fifteen unique attacks, information about hosts that are continuously
attacking your network, the distribution of attacks by different protocols, and so on.

U opBC provides a standard way for clients to connect to a database. Refer to ODBS FAQ at http://www.ensyncsolutions.com/odbc_fag.htm or
http://www.odbc.org for more information.

Since MySQL is a freely available database and works perfectly well on Linux and other
operating systems, this is a natural choice for Snort. Some different scenarios for using a
database with Snort are:

e You can install and run the MySQL database server on the same machine where Snort is
running, as shown in Figure 5-1.

Figure 5-1. A single computer running Snort and MySQL database server.

A single computer
with Snort and
MySOL Database
rUnning on it

Ethermnetr Network

e You can also install the MySQL server on a different machine and configure Snort to log
to that database, as shown in Figure 5-2.

Figure 5-2. A computer running Snort logging to a separate MySQL
database server.

140

A machine
TUMNIng
Snort

Ethernet Metwork

e You can have multiple Snort sensors to log to a centralized database server running

MySQL server, as shown in Figure 5-3.

Database
SCTVET
running

MySQL

Figure 5-3. Many Snort PCs logging data to a centralized MySQL database

server.

Database
sETVEer
running

MySQL

PC Running Snort

PC Running Snort

The scheme you choose depends on your particular requirements. For example, if you are

PC Running Snort

running only one sensor and don't have any pre-existing database server, it is a natural choice to

install the database on the Snort machine itself. However if you have many Snort machines, it

makes sense to set up a centralized database server as shown in Figure 5-3.

If you are running a separate database server and are logging to it from remote Snort machines,

you can send data without any security or you can use some type of encryption. A possible

scheme using the Stunnel package is discussed at the end of this chapter. Using Stunnel, you can

encrypt all data between the Snort machine and the database server. This system also helps to
pass data through firewalls, because you can use the ports that are already open in the firewall

with Stunnel.

141

Before you start logging to MySQL database, you have to create a database on the database
server for Snort. After creating the database, you have to create tables where Snort data is logged.
The table schema used with the database is available from http://www.incident.org/snortdb/ for
your review. However, you don't need to create tables manually because Snort comes with a
script that will do the entire job for you. To work with MySQL, you may have to recompile Snort
with MySQL support, as will be explained later in this chapter.

After going through this chapter, you should be able to install Snort and MySQL so that all of the
Snort activity is logged to the database. You should also be able to set up a centralized database
server and enable multiple Snort machines to log to this server. The last part of this chapter
provides information about using the Stunnel packet for secure data exchange between Snort
machine and a remote database server.

5.1 Making Snort Work with MySQL

There are a few basic steps to make Snort work with MySQL. A high level step-by-step
approach to build a Snort-MySQL system follows. Details of each step will be presented later in
the chapter.

1. Compile Snort with MySQL support and install it. Make sure that Snort is working
properly by creating some alert messages. You have to use --withmysgl command line
argument with the configure script as mentioned in Chapter 2.

2. Install MySQL and use mysql client to make sure the database is available. See Appendix
C for basic information about how to get started with MySQL.

3. Create a database on the MySQL server for Snort. | have named this database "snort."”
You may choose any name for the database. This is explained later in this chapter.

4. Create a user name and password in the database. The user name will be used by Snort to
log data.

5. Create tables in this database using scripts that came with Snort distribution in the
contrib directory.

6. Modify the snort.conf file to enable the database plug-in as explained later. You will

use the database name, user name and password for the database that you just created.

Restart Snort. If everything goes well, Snort will start logging to the database.

8. Generate some alerts and use the mysql client program to make sure that alerts are being
logged into the database.

~

The rest of the chapter will provide explanations about how to perform all of these steps. The
next chapter discusses the use of ACID, which will make real use of the work that you do in this
chapter.

5.1.1 Step 1. Snort Compilations with MySQL Support
Snort must be compiled with --with-mysgl if you want to use MySQL database with Snort.

This is done with the help of the configure script as explained in Chapter 2. A typical
configure script command line follows:

142

-/configure --prefix=/opt/snort --with-mysql=/usr/lib/mysql

When you run the configure script, | would recommend adding support for other components
such as SNMP, which is very useful. MySQL libraries must be present in Zusr/1ib/mysql
directory for successful compilation. Refer to Chapter 2 for details.

5.1.2 Step 2: Install MySQL

I would suggest installing the MySQL database packages that come with RedHat or other Linux
distributions. MySQL is also available for Microsoft Windows platforms. This is the easiest way
to install the database. However you can also download MySQL database server and client
software in the source code form from its web site at http://www.mysgl.org and compile and
install it yourself. However, this is recommended only for very experienced users.

5.1.3 Step 3: Creating Snort Database in MySQL

Once you have compiled Snort with MySQL support, the next step is to create MySQL database
where Snort can log data. Before you start using MySQL, make sure that MySQL server is
running on the machine that is being used as the database server. You can use ps —ef | grep
mysqgl command for this purpose. If this command shows MySQL processes, it means that the
server is running. If you are using a single machine, you can have the database server running on
the machine where Snort is installed. As mentioned earlier, you can also have a separate database
server. For the purpose of this book, I have used a single machine and all components including
Snort and MySQL server are installed on it.

You can download and install the latest MySQL server from http://www.mysal.org web site or
get the RPM package that is part of your RedHat installation disk. For people running Snort on
Microsoft Windows machines, it is better to get the binary installable package. You can use the
root database user to create the snort database and grant needed privileges to the rr user.

The mysql client program is used to connect to the database server. You can use any name for

the Snort database and any name for the user to access this database. For the purpose of this book,
we are creating a database named "snort™ and a user "rr" to access this database. Assuming
MySQL server is running on localhost, a typical mysql session to create the database and

check its status is as follows:

[root@laptop]# mysgl -h localhost -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40 to server version: 3.23.36

Type “help;® or "\h® for help. Type "\c" to clear the buffer

mysql> create database snhort;
Query OK, 1 row affected (0.00 sec)

mysql> use snort
Database changed

143

mysgl> status

mysql Ver 11.13 Distrib 3.23.36, for redhat-linux-gnu (i386)

Connection id: 41

Current database: snort

Current user: root@localhost

Current pager: stdout

Using outfile: "

Server version: 3.23.36

Protocol version: 10

Connection: Localhost via UNIX socket
Client characterset: latinl

Server characterset: latinl

UNIX socket: /var/lib/mysqgl/mysql . sock
Uptime: 1 hour 56 min 29 sec

Threads: 1 Questions: 107 Slow queries: 0 Opens: 14 Flush
tables: 1 Open tables: 7 Queries per second avg: 0.015

The following commands are used in this session:

e The command "mysql -h localhost -u root —p" is used to connect mysql client to a
database server running on localhost. The "-u root" part shows the database user
name used to connect to the database. The "-p" part is used to enter user password on the
next line. A welcome message is displayed after login and you get the "mysqgl>" prompt
where you can issue other commands.

e The command "create database snort;" creates a new database in the MySQL server
with the name "snort". You can use any name of your choice for the database.

e The"use snort” command is used to start using the newly created database.

e The "status" command shows current status of the database server. It shows that the
currently opened database is "snort."”

To end the mysqgl client session, you can use the "exit" command at the MySQL prompt.

5.1.4 Step 4: Creating MySQL User and Granting Permissions to User
and Setting Password

Using the database user root to access the Snort database is not recommended. For this purpose,
you will create a new user "rr". The next command creates a user with name rr. The same
command also grants the following permissions to all tables in the snort database we recently
created.

o CREATE, used to create new objects

e INSERT, used to insert data into the database

e DELETE, used to delete data from the database
o UPDATE, used to modify records

e SELECT, used to display and select records

144

We shall use this user to access the Snort database. This user name and password are also used in
the snort.conf file when you configure output database module.

mysqgl> grant CREATE, INSERT,DELETE,UPDATE,SELECT on snort.* to rr@localhost;
Query OK, 0 rows affected (0.00 sec)

mysql>

The permission for this newly created user is granted only for the database Snort. A single
command creates the user and grants permission.

Now you need to assign a password to this user. The following command assigns a password
"rr78x" to this user.

mysql> set password for rr = password("rr78x");
Query OK, O rows affected (0.00 sec)

mysql>

This password is used in the snort.conf file along with the user name with MySQL output
module configuration. You have now set values for the following fields of the MySQL output
plug-in in snort.conf file:

o Database name, which is snort

« Database user name which is rr

o Database user password which is rr78x

e The host where database server is running, which is the same machine where Snort is
installed. If both Database server and Snort are running on the same machine, you will
use "localhost" as the host name.

5.1.5 Step 5: Creating Tables in the Snort Database

After creating a database user and a Snort database, you now have to create the tables required to
store data in the database. Fortunately you can use the script create_mysql in the contrib
directory and it will create all of the necessary tables for you. The contrib directory is present
when you download Snort in the source code form from its web site http://www.snort.org and
extract its source files. The create_mysql script is present along with other useful stuff in this
directory. For example, scripts to create database schema in other types of database servers are
also found in this directory.

The following command uses this script to create all database tables in the snort database.

[root@laptop]# mysql -h localhost -u rr -p snort < contrib/create_mysqgl
Enter password:
[root@laptop]#

Different command line options are used with this command.

145

e The"-h localhost" part of the command is used to tell the mysqgl client that the
database server is running on the same machine as the client.

e The"-u rr" partis used to specify database user name to log into the database server.
This is the same user that you created previously.

e The "-p" part shows that you will enter the password for user rr in the next line.

e The "snort" part of the command line shows that the database that will be used to create
tables is "snort."”

e The last part "<contrib./create_mysql" specifies a file name and shows that mysql
client will read commands from this file.

To display what tables have been created, use the following session:

[root@laptop]# mysql -h localhost -u rr -p snort

Enter password:

Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 46 to server version: 3.23.36

Type “help;® or "\h® for help. Type "\c" to clear the buffer

mysqgl> show tables;

data

detail
encoding
event

icmphdr

iphdr

opt

reference
reference_system
schema

sensor
sig_class
sig_reference
signature
tcphdr

udphdr

16 rows in set (0.00 sec)

mysql>

The "show tables” command lists all the tables in the currently open database. There are sixteen
tables created in the table by the create_mysql script as listed above. The first table name in the
list is data and the last one in the list is udphdr. Each of these tables keeps part of the
information about Snort activity.

146

The data table contains the payload for each packet that triggers an alert.

The detail table contains information about how much detail is logged with a packet. By
default it has only two rows. The first row is "fast" and the second one is "full”. You can
think of this information as the logging mode described in previous chapters.

The encoding table shows the types of encoding used when logging data packets. By
default it contains three types of logging: hex, base64 and ASCII.

The event table lists all events and stores a timestamp for these events.

The icmphdr table contains information about the ICMP header of packets that are logged
into the database. It contains information including ICMP type, ICMP code, ICMP 1D,
ICMP sequence number and so on. For more information about ICMP headers, refer to
RFC 792 and Appendix C.

The iphdr table contains all fields of the IP header for logged data packets. The
information includes source and destination IP addresses, IP protocol version, IP header
length, type of service (TOS) value, time to live (TTL) value and so on. More
information about IP headers can be found in RFC 791 and Appendix C.

The opt table contains options.

The reference and reference_system tables contain information about reference sites used
to get more information about a vulnerability. This is the same information that is used
inside Snort rules using the ref keyword as discussed in Chapter 3.

The schema tables shows the version of database schema.

The sensor table contains information about different sensors that are logging data to the
Snort database. If there is only one Snort sensor, the table contains only one row.
Similarly, the table contains one row for each sensor.

The sig_class contains information about different classes of Snort rules as discussed in
Chapter 3. As an example, it contains entries like "attempted-recon™, "misc-attack and so
on.

The sig_reference table links signatures to different online reference sites.

The signature table contains information about signatures that generated alerts.

The tcphdr table contains information about the TCP header of a packet, if the logged
packet is of TCP type. For more information about TCP header, refer to RFC 793 and
Appendix C.

The udphdr table contains information about UDP header part of the packet if the logged
packet is of UDP type. This information contains UDP source and destination ports,
length and checksum. For more information about UDP header, refer to RFC 768 and

Appendix C.

If you are wondering about the structure of each table, you can display different fields in each
table. The following command shows the structure of the iphdr table:

mysqgl> describe iphdr;

o Ry f T —— R o — o —_—— +
| Field | Type | Null | Key | Default | Extra |
Fom e Ry F T —— R o o +
| | int(10) unsigned | | PRI] O | | |
| | int(10) unsigned | | PRI] O | |
| ip_src | int(10) unsigned | | MuL | O | |
| ip_dst | int(10) unsigned | | MuL | O | |
| ip_ver | tinyint(3) unsigned | YES | | NULL | |

147

| ip_hlen | tinyint(3) unsigned | YES | | NULL | |
| ip_tos | tinyint(3) unsigned | YES | | NULL | |
| ip_len | smallint(5) unsigned | YES | | NULL | |
| ip_id | smallint(5) unsigned | YES | | NULL | |
| ip_flags | tinyint(3) unsigned | YES | | NULL | |
| ip_off | smallint(5) unsigned | YES | | NULL | |
| ip_ttl | tinyint(3) unsigned | YES | | NULL | |
| ip_proto | tinyint(3) unsigned | | | O | |
| ip_csum | smallint(5) unsigned | YES | | NULL | |
T —— s Fom——— Fom—— T - TR +

14 rows in set (0.00 sec)

mysql>

For people who want to go into details of how data is stored, database schema provides great
information. You can view complete database schema at http://www.incident.org/snortdb/.

5.1.5.1 Creating Extra Tables

When you are using some other programs with database and Snort to map service numbers to
service names, additional mapping information is needed. For example, TCP port 23 is used for
Telnet. However the tcphdr table contains only the port number, not the textual description. If
you want to display source and destination ports as text "Telnet port™ instead of "23", you need
this information. Snort comes with an additional script that adds more tables and populates them
with this information. To create these extra tables, get snortdb-extra.zip file in the contrib
directory and unzip it. Use the following command to create the additional tables and add data to
them.

[root@laptop]# mysgl -h localhost -u rr —p snort < contrib/snortdb-extra
Enter password:
[root@laptop]#

The command creates three tables, protocols, services, and flags. These tables contain descriptive
information for different protocols, services and flags. The script also populates the tables with
data. A description of these tables is provided in the snortdb-extra script. The list of new
tables follows:

mysqgl> show tables;

data
detail
encoding
event
flags
icmphdr
iphdr

opt
protocols
reference

148

reference_system |
schema |
sensor |
services |
sig_class |
sig_reference |
signature |
tcphdr |
udphdr |

+

19 rows in set (0.01 sec)

mysql>

There are now nineteen tables instead of sixteen. The services table is quite large and it contains
entries for 65535 services, both for TCP and UDP. The total number of rows in this table is
131072 which makes it quite a big table. Creation of this table may take a few seconds on the
database server when you run the snortdb-extra script.

5.1.5.2 Sample Entries in Snort Database Tables

To give you an idea of what type of entries are present in different tables in the Snort database,
let us select some items from the database and display them.

Following are some entries from table sig_class.

mysqgl> select * from sig_class;

__________________________ +
sig_class_name |
__________________________ +
attempted-recon |
misc-attack |
bad-unknown |
web-application-activity |

+
I
|
|
|
|
|
|
|
|
|
|
|
|

| sig_class_id

+
I
|
|
|
|
|
|
|
|
|
|
|
|

o N ©
O + i —— o —

4 rows in set (0.

mysql>

The select command pulls out data from a database and displays it on the screen. You can use the
select command after connecting to database using the mysql client. For more information on
MySQL commands, refer to Appendix B.

The following are some records in reference_system table.

mysqgl> select * from reference_system;

o o +
| ref_system_id | ref_system_name |
PRy e +
| 8 | nessus |
| 7 | cve |
| 6 | arachnids |

149

| 5 | bugtraq |

o o +

4 rows in set (0.02 sec)

mysql>

The following output of the select command shows records in encoding table.

mysgl> select * from encoding;

o o +
| encoding_type | encoding_text |
T T +
| 0 | hex |
| 1 | base64 |
| 2 | ascii |
PRy PRy +

3 rows in set (0.00 sec)

mysql>

The following output of the select command lists all entries in the services table for port numbers
between 20 and 30.

mysql> select * from services where port<30 and port>20;

o —— o Fom—_— Ny +
| port | protocol | name | description |
T T — TR . +
| 21 | 6 | ftp | File Transfer [Control] |
| 21 | 17 | ftp | File Transfer [Control] |
| 22 | 6 | - | Unassigned |
| 22 | 17 | - | Unassigned |
| 23 | 6 | telnet | Telnet |
| 23 | 17 | telnet | Telnet |
| 24 | 6 | - | Unassigned |
| 24 | 17 | - | Unassigned |
| 25 | 6 | smtp | Simple Mail Transfer |
| 25 | 17 | smtp | Simple Mail Transfer |
| 26 | 6 | - | Unassigned |
| 26 | 17 | - | Unassigned |
| 27 | 6 | nsw-fe | NSW User System FE |
| 27 | 17 | nsw-fe | NSW User System FE |
| 28 | 6 | - | Unassigned |
| 28 | 17 | - | Unassigned |
| 29 | 6 | msg-icp | MSG ICP |
| 29 | 17 | msg-icp | MSG ICP |
B T Fom e Fom e My +

18 rows in set (1.14 sec)

mysql>
5.1.6 Step 6: Modify snort.conf Configuration File

After configuring the database and creating tables and user, you need to edit the snort.conf file.
These lines in the file will enable logging of log messages to the MySQL database:

150

output database: log, mysql, user=rr password=rr78x \
dbname=snort host=localhost

In the above line, name of the database is snort and the MySQL server is running on localhost.
The user for the database is rr and it has a password rr78x. If the user has no password, the line
should be like the following:

output database: log, mysql, user=rr dbname=snort \
host=l1ocalhost

The database is located on MySQL server running on the localhost, the machine where Snort is
installed. If you have a separate database server, you can specify the name of the server on this
line in the snort.conf file. For example, if the database server is not the same as where Snort is
running, you can use the following lines in the snort.conf file.

output database: log, mysql, user=rr password=rr78x \
dbname=snort host=192.168.1.23

The MySQL database server for the above example is running on host 192.168.1.23. If many
Snort sensors are installed and all of them are logging data to the same database server
192.168.1.23, all of the sensors must have the same line in their snort.conf files. The database
server must be running before starting Snort.

5.1.7 Step 7: Starting Snort with Database Support

When you start Snort after database configuration, the starting message shows what database is
being used. The boldface lines show database related information.

[root@laptop]# Zopt/snort/bin/snort -c /etc/snort/snort.conf
Log directory = /var/log/snort

Initializing Network Interface ethO

-—-== Initializing Snort ==--
Decoding Ethernet on interface ethO
Initializing Preprocessors!

Initializing Plug-ins!
Initializing Output Plugins!
Parsing Rules file /etc/snort/snort.conf

+++++++++++++++++ A
Initializing rule chains...
No arguments to frag2 directive, setting defaults to:
Fragment timeout: 60 seconds
Fragment memory cap: 4194304 bytes
Stream4 config:
Stateful inspection: ACTIVE
Session statistics: INACTIVE
Session timeout: 30 seconds
Session memory cap: 8388608 bytes
State alerts: INACTIVE

151

Scan alerts: ACTIVE
Log Flushed Streams: INACTIVE
No arguments to stream4_reassemble, setting defaults:
Reassemble client: ACTIVE
Reassemble server: INACTIVE
Reassemble ports: 21 23 25 53 80 143 110 111 513
Reassembly alerts: ACTIVE
Reassembly method: FAVOR_OLD
Back Orifice detection brute force: DISABLED
Using LOCAL time
database: compiled support for (mysqgl)
database: configured to use mysql

database: user = rr

database: database name = snort
database: host = localhost
database: sensor name = 10.100.1.111
database: sensor id = 1

database: schema version = 105

database: using the "log" facility

886 Snort rules read...

886 Option Chains linked into 99 Chain Headers
0 Dynamic rules

++++++++++++

Rule application order: ->activation->dynamic->alert->pass->log
-—-== Initialization Complete ==--

-*> Snort! <*-

Version 1.8.6 (Build 105)
By Martin Roesch (roesch@sourcefire.com, www.short.org)

The name of the database, the name of user and the host where the database is installed are all
listed in the output. The schema version is saved in the schema table in MySQL database.

5.1.8 Step 8: Logging to Database

After configuring the database properly, you should check if log and alert messages are being
saved in the database tables. We use the following two rules for Snort to test the database.

alert i1p any any -> any any (ipopts: Isrr; msg: \
"LSRR Options set'; logto: "test';)

alert icmp any any -> 192.168.1.0/24 any (fragbits: D; \
msg: '‘Dont Fragment bit set';)

To test these rules, we use the following two commands on a Microsoft Windows machine. |
have used Windows XP Home Edition for the sake of experiment.

ping -n 1 -f 192.168.1.2
ping -n 1 —-j 192.168.1.2 192.168.1.2

The first command sends an ICMP echo packet with the don't fragment (DF) bit set and thus
triggers the second rule. The second command sends an ICMP packet with Loose Source Record

152

Routing (lIsrr) option set, which triggers the first rule. Both of these commands create alert
messages. The alert messages are recorded in the database as you can see in different tables. For
example, the icmphdr table contains ICMP headers corresponding to these alert messages.

mysqgl> select * from icmphdr;

[T o o TSRS - TR RS- TR - o +
| sid | cid | icmp_type | icmp_code | icmp_csum | icmp_id | icmp_seq |
E S —— F S —— Fom e — —— Fom e —— Fom e - Fom e —_——_—— Fom e ——_—— — +
| 1] 1] 8 | 0] 18780 | NULL | NULL | |
| 1] 2] 0| 0| 20828 | NULL | NULL |
| 1] 31 8 | 0 | 18524 | NULL | NULL |
F S —— E Fom e — — —— o — e —— Fo——_ Fom o — +

3 rows in set (0.00 sec)

mysql>

In the output of the select command, different fields of the ICMP header are present, including
ICMP type and ICMP code. The signature table contains messages and other options from these
messages as shown below:

mysqgl> select * from signature;

Fom ey o Ry o A
—————— +

| sig_id | sig_name | sig class id | sig _priority | sig rev |
sig_sid |

Fom——_—— - e o Ty o — +———
—————— +

| 1 | Dont Fragment bit set | 0 | NULL | NULL |
NULL |

| 2 | LSRR Options set | 0 | NULL | NULL |
NULL |

Fom ey o Ry o A

2 rows in set (0.00 sec)

mysql>

Note that the sig_name field in the signature table contains the same information as you used in
the "msg" part of the two Snort rules defined earlier. You can test other tables as well. When you
go to the next chapter and start using ACID, you will find out that you don't need to use the
command line mysql client anymore. ACID provides a web interface that can be used to view
and manage tables on a web browser.

5.2 Secure Logging to Remote Databases Securely
Using Stunnel

The MySQL database server is listening to port number 3306. If your database server is not on
the same machine where Snort is running, you have to log messages on a remote database server.
From a security point of view, you may want to encrypt traffic between Snort and the database

153

server. Stunnel or Secure Tunnel is an open source package available from
http://www.stunnel.org that provides you a secure tunnel between two hosts.

Get the latest version from the web site and install it on both the Snort machine and the database
server. You have to run it on both the Snort machine (client) and the database server to establish
a tunnel. On the database server, use the following command:

stunnel -P/tmp/ -p stunnel.pem -d 3307 -r localhost:3306

If the stunnel directory is not present in the PATH variable, use the full path name with the
command. The command will redirect all incoming connections on port 3307 to port 3306 where
MySQL server is listening.

On the Snort machine, use the following command:

stunnel -P/tmp/ -c -d 3306 -r SERVER_NAME:3307

Replace SERVER_NAME with the name or IP address of the server. This command will redirect
all connection on local port 3306 (where MySQL database server is supposed to listen to) to port
number 3307 on the remote server.

The net effect is that Stunnel is getting all packets on local port 3306 and forwarding them to
port 3306 on the remote host by using port number 3307 in a secure way. Make sure that
MySQL server is not running on the hosts where Snort is running because MySQL server may
already have occupied port 3306 and Stunnel will not be able to bind to it.

After creating this setup, you can configure Snort so that it assumes that MySQL database server
is running on the local machine. In fact, Snort will think that MySQL server is running locally
but Stunnel will transfer all the communication to the remote database server.

This setup is also very useful when you have many sensors logging to a central database server.
NOTE
You can log to a remote MySQL database without using Stunnel. Single or multiple sensors can

log to a central database server without the requirement of any secure tunnel. Stunnel just
provides security of your data while it goes from sensors to the database server.

5.3 Snort Database Maintenance

From time to time, you need to perform some operations on the database to keep it running
efficiently. Table optimization enhances the database efficiency. You can optimize individual
tables using the optimize command. The following command optimizes the data table.

mysql> optimize table data;
Fom Fom e Fom o +

| Table | Op | Msg_type | Msg_text |

154

1 row in set (58.10 sec)

mysql>

You can create a script to optimize all tables. For this purpose, save the following commands in a
file optimize.sql.

optimize table data;
optimize table detail;
optimize table event;
optimize table icmphdr;
optimize table iphdr;
optimize table opt;

Use the following command to run this script:
mysql -h localhost -u rr -prr78x snort < optimize.sql

I have not used all table names in the script. You can use all table names by creating additional
lines if you like.

You should set this command as a cron job to run everyday so that the database is optimized
every 24 hours.

5.3.1 Archiving the Database

If your database grows very large, you may want to archive it. One method is to back up the
database, drop it and recreate a new database. Another way is to back up the existing data into
archive tables and then clean these tables. Some scripts are available at
http://www.dirk.demon.co.uk/utils/ for this purpose. Please download the scripts from this web
site and read the text file that comes with them for more information.

5.3.2 Using Sledge Hammer: Drop the Database

If you really want to create a new database and want to destroy all data in the current database,
you can drop it using the following command after connecting to the database using mysql client.

drop database snort;

You can use the same procedure discussed earlier in this chapter to create a new database. But do
it only if you really know what you are doing. You have been warned!

5.4 References

1. Snort database schema at http://www.incident.org/snortdb/

155

arwN

MySQL at http://www.mysql.org
Stunnel is available from http://www.stunnel.org
ODBC FAQ at http://www.ensyncsolutions.com/odbc_faq.htm

ODBC project at http://www.odbc.org

156

Chapter 6. Using ACID and SnortSnarf
with Snort

Analysis Console for Intrusion Databases (ACID) is a tool used to analyze and present Snort
data using a web interface. It is written in PHP. It works with Snort and databases like MySQL,
as you have learned in the last chapter, and makes information available in the database to the
user through a web server. In addition to Snort, the tool can be used with other security-related
products like firewalls and networking monitoring.

This chapter provides information about ACID and discusses how to install it with MySQL and
Snort to view and analyze the intrusion detection data logged by Snort into the database. You
will go through a step-by-step procedure to install ACID and use it. The graphical representation
of captured data is very useful for analysis purposes.

In addition to ACID, the chapter also provides basic information about SnortSnarf, another tool
that can be used with a web server. SnortSnarf is able to parse Snort log files and generate
HTML pages that can be viewed using a web browser. | assume that you are able to install and
run Apache web server as well as MySQL database server, which are required in order to use the
tools discussed in this chapter.

.1 What is ACID?

ACID consists of many Pretty Home Page (PHP) scripts and configuration files that work
together to collect and analyze information from a database and present it through a web
interface. A user will use a web browser to interact with ACID. You have to have a web server,
database server, PHP and some other tools installed on your system to make it work. For the sake
of this book, I am using a RedHat Linux 7.1 machine. I have installed Apache web server, PHP,
and MySQL, which are part of the RedHat distribution. The database is configured to work with
Snort as explained in Chapter 5. The latest version of ACID is available from
http://www.cert.org/kb/acid/.

ACID offers many features:

1. Searching can be done on a large number of criteria like source and destination addresses,
time, ports and so on, as shown in Figure 6-7.

Figure 6-7. Searching database using ACID.

157

Horl onder: o nong |« mestang (ascend) | ¢ imestamp (descend] | o signature

ey Dﬂi

2. Packet viewing is used to view different parts of packet. You can view different header
parts as well as the payload. Refer to Figure 6-6 for an example of ICMP packet.

Figure 6-6. Alert detalil.

158

L —— T

Fie Edf View Gb Communicalir Hal
i o 3 4 . @ = & 0O @
Back Fonyen Roinad Home Search Metscape Pum Securty Shop Sop

J -;J‘ Fonimarks ..itwm {htty #7102 16% 1 B/ncidiecad_qry_slect php rubmit=230-+201-T¥2fmoct o r‘ﬂ'mm
"| 4 Red Hat Natwork. g Traning g% Suppan o Sofware o Hudwars g% Developers ¢ Enbedded g* Search o Documenason g% Cowr|

acio Alert o 4

| Etack |

Guarted DB on Tra July 18, 2002 20.50.37
'*!‘"-ﬂ |.l11|‘f'||

L]
o Proviout #7=(1=23 [Last]
§ =3 | 2000=07-06 WE1E1E | Dok Fragiernl b sl
IR T
VI NEE 13 Lo

fbiort

152,160.1.2 |[192,168.1.100 | 4 ==

Lirulel By neaoive oy | Linade B2 reiofve el
EEd

PP T T e :

0y Ero Feply @0

Targta » 87

Ab4 12 ES B4 ES £ LT CF U9 ER B €0 €5 EE B T abcdcdghiiklenep
Q10 P1 TR TE M IS0 FT 61 42 63 B4 WS BL T NN B qritwendcdrfohl

<< Provioue #i--21 [La) 7]
1| R |

3. Alerts can be managed by creating alert classes, exporting and deleting and sending them
to an e-mail address.

4. Graphical representation includes charts based upon time, protocol, IP addresses, port
numbers and classifications.

5. Snapshots can be taken of the alerts database. As an example, you can view alerts for the
last 24 hours, unique alerts, frequent alerts and so on. Refer to Figure 6-7 for detail on
snapshots.

6. You can go to different whois databases on the Internet to find out who owns a particular
IP address that is attacking your network. You can then contact the responsible person to
stop it. The whois database contains information about owners of domain names and IP
addresses.

All of these facilities are available through the web browser. You point the web browser to a
URL to access ACID screens. For example, | can use http://www.conformix.com/acid/ on my
intranet site to view logs. The web pages are written in PHP. Support packages like GD library

159

and PHPLOT are used to print graphs on the web pages. PHP connects to the backend MySQL
database to get and update data. For this purpose, you have to provide the database user name
and password.

The big picture of the whole system including Snort, MySQL, Web server, PHP and web
browser is shown in Figure 1-1 in Chapter 1. The following is a brief, step-by-step description of
what happens when an intruder attempts to get into your network.

e Anintruder tries to get into your network.

e A Snort sensor installed in your network detects intruder activity based on its rules. It
then uses information in the snort.conf file to log data into MySQL database. You have
to provide the database user name, password, hostname or IP address of the database
server and database name in snort.conf file.

e A web server is installed where MySQL server is running.

e A user starts the browser, connects to the web server and starts requesting PHP web
pages.

e The PHP engine connects to the database using the database user name, password, and
database name and gets information from the database server.

e The web server processes this information and sends back a reply to the web browser,
where a user can view intrusion data.

e A user can then perform different operations on this data via the web pages.

The rest of this chapter describes how to install and configure all of these tools to build a web-
based user interface.

6.2 Installation and Configuration

Since ACID needs additional packages, like PHPLOT, GD library and so on, to work, you need
to make sure that everything is installed properly. Fortunately you can install different
components independently from each other in no particular order. The following step-by-step
process makes it easy to put everything in place.

o Install and test Snort. You have already done it in Chapter 2.

o Install and test MySQL. Please see Chapter 5 for reference. After installing MySQL, you
have to create a database and tables so that Snort can log its activity into the database.
After that you have to configure Snort using snort.conf file so that it logs its data to the
database server.

« Install Apache. I would suggest using the RPM package that is part of RedHat installation
media. You can also download the latest version of Apache web server from
http://www.apache.orqg.

o Download ACID from http://www.cert.org/kb/acid/ and uncompress it in /var/www/html
directory. This process creates a directory named acid under /var/www/html directory.
The Apache package that is part of the RedHat distribution has its HTML files under
/var/www/html directory. Depending on your distribution, the directory may be different
on your machine. If you download Apache in source code form and compiled it yourself,
you can choose a particular directory for this purpose during the compilation process. Just

160

keep in mind that you have to install ACID under the directory where Apache is looking
for HTML files.

e Getand Install PHP. You can download it from http://www.php.net or you can use the
RPM package that is part of the RedHat distribution. Set display_errors variable in
/etc/php.ini to Off. If you are using a precompiled or RPM version of Apache, PHP
may already have been built into it as a module.

e Getand install GD library from http://www.boutell.com/gd/. This is also available on
RedHat installation CDs in the RPM form and | would recommend using the RPM file. It
is installed as Zusr/1ib/1ibgd.so file.

e Download PHPLOT from http://www.phplot.com and uncompress it in /var/www/html
directory. This is used to create graphics in the web pages.

« Download ADODB from http://php.weblogs.com/adodb and install it in /var/www/html
directory. ADODB is an object oriented library written in PHP and is used to connect to
the database. ADODB Frequently Asked Questions (FAQ) are available at
http://php.weblogs.com/adodb_fag.

Let us carry out the process of installing these components. At this point | assume that you have:

o Installed MySQL database server as discussed in the last chapter.
« Installed and configured Snort so that it logs data into the Snort database.
e Installed Apache, GD library, and PHP as part of RedHat Linux installation.

Now download and install the software as mentioned below:

e Download ACID file acid-0.9.6b21 . tar.gz from http://www.cert.org/kb/acid/ and put
it in Zopt directory.

e Download ADODB file adodb221 . tgz from http://php.weblogs.com/adodb and put it in
/opt directory.

e Download PHPLOT file phplot-4.4.6.tar.gz from http://www.phplot.com and put it
in Zopt directory.

e Move to /var/www/html directory.

e Use the command "tar zxvf Zopt/acid-0.9.6b21.tar.gz." This will create a
directory /var/www/html/acid and put all ACID files under it.

e Use the cd command to go to /var/www/html/acid directory.

e Use the command "tar zxvf Zopt/adodb221.tgz" to extract ADODB files. The
command will create a directory /var/www/html/acid/adodb and put all ADODB files
under this directory.

e Use the command "tar zxvf Zopt/phplot-4.4.6_tar.gz" to extract PHPLOT files.
This will create a directory /var/www/html/acid/phplot-4.4.6 and put all PHPLOT
files under this directory.

o Create another database snort_archive using "create database snort_archive;"
command after starting mysql client using the procedure described in Chapter 5. You
have already created a database with the name "snort™ and a user with the name "rr" as
discussed in Chapter 5. The new snort_archive database is used by ACID to archive
old data. The new database is not required by Snort to log data. If you don't want to
archive old data using ACID, you can skip this step and the next step as well.

161

o Grant permissions to user rr to manage snort_archive database using the command
"grant CREATE, INSERT,DELETE,UPDATE,SELECT on snort_archive.* to
rr@localhost;".

o Create tables in this database using the command "mysgl -u rr -p snort_archive
<contrib/create_mysql" as described in Chapter 5.

e Setdisplay _errors variable in Zetc/php. ini to Off.

Now you have to configure ACID so that it can interact with the MySQL database. The
configuration process also enables Snort to use the PHPLOT package. The configuration process
is simple and includes setting up different parameters in the acid_conf.php configuration file
which is located in the same directory where you uncompressed the ACID files. For the
examples in this book, the file is located in the /var/www/html/acid directory. You have to put
information about the following items in this file:

o Location of ADODB files. In our case this path is . /adodb. This is because all ADODB
files are located in adodb directory under the directory where ACID files are located.

o Type of database server. For the example in this book the type of server is "mysql".

e MySQL database name for Snort log data.

e MySQL database server name or IP address.

e MySQL database user name and password.

« Name of the archive database if you are using one.

« Database server name where archive database is located. In our case both snort and
snort_archive databases are located on localhost.

o Database user name and password to access snort_archive database.

e Location of PHPLOT files. In our case this is ./phplot-4.4.6. This is because all
PHPLOT files are located in phplot-4_4_6 directory under the directory where ACID
files are located.

This information is present in the start of the acid_conf.php file. The typical opening lines of
this file in my installation are as follows:

<?php
$ACID_VERSION = "0.9.6b21";

/* Path to the DB abstraction library

* (Note: DO NOT include a trailing backslash after the
* directory)

* e.g. $foo = "/tmp"” [OK]

* $foo = "/tmp/” [OK]

* $foo = "c:\tmp” [OK]

* $foo = "c:\tmp\" [WRONG]

*/
$DBlib_path = "./adodb";

/* The type of underlying alert database
*

* MySQL : "mysql™
* PostgresSQL : 'postgres'

162

* MS SQL Server : "mssqgl"
*/
$DBtype = "mysqgl'’;

/* Alert DB connection parameters

* - $alert_dbname : MySQL database name of Snort

: alert DB
* - $alert_host > host on which the DB is stored
* - $alert_port : port on which to access the DB
* - $alert_user : login to the database with

> this user
* - $alert_password : password of the DB user
*
* This information can be gleaned from the Snort database
* output plugin configuration.
*/

$alert_dbname
$alert_host
$alert_port
$alert_user
$alert_password

“snort';
"localhost';

"rr'';
"rr78x';

/* Archive DB connection parameters */
$archive_dbname = "snort_archive";
$archive host "localhost";
$archive_port s

$archive_user
$archive_password

rr'';
"rr78x';

/* Type of DB connection to use

* 1 : use a persistant connection (pconnect)
* 2 - use a normal connection (connect)
*/

$db_connect_method = 1;

/* Path to the graphing library

* (Note: DO NOT include a trailing backslash after the directory)
*/

$ChartLib_path = "_/phplot-4.4.6";

Note that you have used the same user name, password, and database name as we used in
snort.conf file. The following is a description of data located in the acid_conf.php file.

The following line in acid_conf_php file sets up the location of ADODB files:

$DBlib_path = "_./adodb";

The following line in acid_conf.php file sets up the type of database:
$DBtype = "mysql’;

The following lines in acid_conf.php file set up the main Snort database information where
Snort logs its data:

163

$alert_dbname
$alert_host
$alert_port
$alert_user
$alert_password

"'snort';

Yt
"rr78x';

The following lines in acid_conf.php file set up archive database information where ACID
archives data. This part is not necessary for Snort or ACID operation. It is required only if you
want to archive data using ACID.

$alert_dbname
$alert_host
$alert_port
$alert_user
$alert_password

"snort_archive';
"localhost";
“rrt-

"rr78x';

The following line in acid_conf.php file sets up the location of PHPLOT files.

$ChartLib_path = "_./phplot-4.4.6";

After going through this practice, make sure that Snort, MySQL server, and Apache server are
running. Now you are ready to start using the web interface of ACID.

6.3 Using ACID

If you have installed everything as mentioned above, you should be able to access ACID by
going to URL http:/<your_web_server>/acid/. My web server is running on IP address
192.168.1.2, so | can go the URL http://192.168.1.2/acid/.

The first time you go to this URL, ACID needs to do some setup tasks and you will see a web
window like the one shown in Figure 6-1.

Figure 6-1. Invoking ACID for the first time.

164

The: undertying database snortZidocalhost appears o ba incompletefnvalil

The database version is valid, but the ACID DB struciure (lable: acid_ag) is not present Usa the Sebup page o configure
and opbissize the DE.

At this screen, click the Setup page link and you will move to the DB Setup page shown in
Figure 6-2.

Figure 6-2. Creating ACID tables to existing database.

165

M=

File Edit View Go Communicator Hedp
« <« 3 4 =2 @ 3 o O E || |
Back Forwad Reload Home Search Neticape Prinl Securily Shop Sl0p

i " Bookmarks & Location: futtp: /192 168 1. 2/acid/acid_dh_setup php ,'f 07 what's Related
| 4 Fad Hat Network. g Training 4 Support g Somwars g Hardware o Davelopers 4 Embedded o Search

Huitiz

e 1l D E SEtup Searth AG Maintenance
| Back |
ACID tahles —_——
Adds tables to extand the Snort DB to suppoet the ACID funcionaliy |- Creata ACID AG

Bearch indaxes (Oplional) Adds indaxes 1o the Snort DB o oplimize the speed of the queries DiaME

[Loated n 0 seconds]
Monisas Dangind AIrCERAT
= [| i % oP @ N2

Figure 6-3. The result of creating additional tables in the Snort database to

support ACID.

In Figure 6-2, click the "Create ACID AG" link so that ACID can create its own table to support
Snort. ACID creates its own tables in the main Snort database and uses these tables for its own
housekeeping data. More discussion about ACID tables is presented later in this chapter. Figure

6-3 shows the result of creating these new tables.

166

FI.I a_u. Eﬁmﬁrﬂ&{aﬁ@r Heip
4 5 3 4 . & < & 30 I o
| Back Forwwd . Reload Home Search Meticape Print Securily Shop Sp

;J b " Bookmarks Al Location: fattp: /192 168 1 2/acid/acid_dh_setup php ﬂﬁ? What's Related
| Rud Hal Netwon: ¢ Traiing ¢ Support 4 Sofware 4 Hrdware o Davelopers ¢ Embedded o Search 4 Daci

ACID D B Setup ::::n AG Malntenance
| Back |

Succassfully creatid "acid_&g"

Suctedsflly craated "acid_ag_alest’

Successfully crealed acid _ip cacha”

Succesafully created "acid_svant”

[operation] pescrption] Status |
SCID tahles Adds tables bo extend Mie Snoet DB o support the ACKD funcBonality DONE
Search indexes (Oplional) Adds indexes 1o Be Snor DB 1o oplimize the speed of the quities DCNE
Tha underying Alert DB i3 configured for usage wath ACIO.

Adidtional DB
I arder 1 support Aledt pusging (he selective ability 1o pemanently delele alers fom the database) and DNSAWts lookup
caching, the DB user " must have the DELETE and UFDATE mivilege on the database *snort@iocalhost”

Golo the kain page 1o use the applicaiion
[Loadad m 1 seconds|

-+ Howss Danghm AIrCEAT 1€

k| i % 0P @ 2]

As shown in Figure 6-3, you can click the "Main Page" link towards the bottom of the page to go
to the main ACID page. Web pages shown in Figures 6-1, 6-2 and 6-3 will not be displayed the
next time you start using ACID.

6.3.1 ACID Main Page

The ACID main page provides an overview of currently available data. It has different sections
to display information in groups. You can view traffic profiles by different protocols, get a
snapshot of sensors, search data and so on, as shown in Figure 6-4. You are encouraged to
explore the different links found on this page.

Figure 6-4. ACID main page.

167

HIIP

{#'ﬂrﬂiaiﬁd#@-iﬂ|

| Back Forvwd Relsad Home Seach Metscaps P Secudty Shop Sim

|| wif ~ Bookmarks A Locaion: http /7192169 1 2/acid/ac1d main php o 47 wnat's Retated

l' 4 FEd Hat Metunak g Training g# Suppor o Sofuare g# Hardware g Developers 2 Embeddad g Search g Docd
Analysis L.onsole Tor Intrusion Latapases E

Added 20 alet(z) [0 e Alert cacha

Quaried on : Wed July 51, 2002 153526
Matakasa: snot@iocaihost (schema verson: 105)
Time wirsderw: [2002-07-21 20:20:31] - [2002-07-31 15:35:22)

| Benzmrs: | Traffic Profile by Protscol
Iu;iwa Marts: 4 [2 categonas | ToP (4%

: ’ | |

[Total Murdier of Alerts: 63 UDP (48%)
® Sowce IF addresses: 3

® Disd IP addresies 4 ICMP [48%:)
® Unigue IP links 4

® Sowmce Porls: o

G TCP{3) UDP (1)
& Desl Pors: £

O TCP (1) UDF (1)

Postscan Trafc {07}

= Snmrch
& Graph Alert data (EXPERIMENTAL)
= Snapshol
= osd recent Alerls: any profocol, » Mot frequent 5 Merts
TCP, UDP, ICMP
& Taday's: alers unique, listing, IP = Most Freguent Source Pods: any |, TCP , UDP
sre J sl » o=t Freguent Deslination Pors: any |, TCP ,
& Las| 24 Hours: aleds unigue, L]
listing; IP sro f st
® Lagl 72 Hours: alerts unique, = Bt frequent 15 addresses: source,
lisling; IP s £ dst s tinantion

& Mof recent 15 Uninue Merls

& Lasl Source Pors: oy |, TCP |
up#

& Last Destinalion Pors: any , TOP |
uoP

s Guraph &g disliscson Eimeg

= | ! 0w wo @ 2|

By clicking different links on the web page shown in Figure 6-4, you can view a great deal of
information.

o List of sensors that are logging data to the database.

o Number of unique alerts and their detail.

o Total number of alerts and their detail.

e Source IP addresses for the captured data. This shows who is trying to hack into your
network. By following the subsequent links, you can also find the owner of the source IP
address by looking up whois databases.

o Destination IP addresses for captured data.

e Source and destination ports.

o Alerts related to a particular protocol, like TCP alerts, UDP alerts and ICMP alerts.

o Search alert and log data for particular entries.

e Most frequent alerts.

o Plot alert data, which is still experimental.

168

In the following screen shots, you will learn a few important things. But this is just an overview

of what ACID can do for you. The more time you spend using ACID, the more you will learn
about different methods of analyzing Snort data. As you learn new things, you will appreciate

how arranging Snort data in different ways makes a lot more sense compared to just looking at

log files.

6.3.2 Listing Protocol Data

From the main page, you can click on a protocol to get information about packets logged for that

particular protocol. Figure 6-5 shows a screen shot for ICMP protocol. The bottom part of the

screen shows the last fifteen individual packets that have been logged into the database. You can

click on any one of these lines at the bottom to find out more details about a particular packet.

Figure 6-5. ICMP protocol data.

ToEx

Help

< o

a

Reload

i

Back Faritd

“Search

2

Hatscage

=+

Prind Secirhy

o

Shop

4

Hop

wf ~ Bookmarks & Locaion: fhttp //192.169. 1 2/acid/ac1d_qry_main. phpinevslslayecd=Dn f| @7 What's Retated

Added Z3 aleis) o e Alert cacha

Mela Criterin QK- b e SN

Signature

T s tamp

oo Query Results: 15 Last ICMP Alerts

& RENSO0rs
w Unique Slerts [classificalions)

= Unigué addmesses: source | destinglion
= Uniguae: 1P links:
» Zource Port TCP | UDP

= Dpstination Port TCP | UDP
« Tima profile of alars

Hemp
Seanch

;'g|_£ne¢ Het Metuntk g Training g# Suppod o Somiare g Hardware g2 Developers o Embedded g Search g Docun
— =

A Mainldnangn

[Back |

Dizplaying 15 Last ICMP Adars

Fource

Fubilms s
o an-r-43) Dot Fragment bit s1 2002-07-J1 15333 0o ygpyz 182.1GG.1100 ICMP
= p1-1-az) 'E;“.'FPL _ﬁﬁm Wl R0E-D7-JISIEI an yema 00 192.168.1 .2 ICMP
[w sZo(1-a1) Dwnd Fragment bit se1 2002-07-31 15:33:33 19216612 1921661100 AP
e ICAE Packelwil 2002-07-31 153333 ygp 1600000 13206812 ICMP
O pgpogey PeMFragmenthitsel C2002-0F-31 18RI geoqgpn2 1921600000 ICMF
o esop-an IE1r:1rPL _F;“ﬁ%m i 2002-07-0 153332 490 4ep 1,700 192,168,127 MR
O agip-am Do Fragment bit 561 2002-07-31 15:30:3 152 1B6.1.2 1921681100 iChip
S R ":.'r“.'rpl_zﬁm"“m PO0E-07-FN 1SN g5 jem.1.100 19216802 ICMP
O g3 DomFragmentbisel 2002-07-23181740 g ichio qeziniaoe KCMP
f
= | 1 i e oD D 2|

169

6.3.3 Alert Detalils

Figure 6-6 shows details about a particular ICMP packet that you would see when you click on
an alert as shown in Figure 6-5. As you can see, there are different sections on the page. Each
section displays a particular layer of the data packet. The topmost section provides general
information about the alert. The IP section displays all parts of the IP header. The ICMP header
displays ICMP data, followed by the payload. Payload is displayed both in hexadecimal and
ASCII text. Refer to Appendix C for information about different protocol headers.

Navigation buttons are provided in this window that can be used to move to next and previous
alerts. Different colors are used to indicate different headers of the packet, which makes it very
easy to understand visually.

6.3.4 Searching

One important feature of ACID is that it can be used to search the captured log and alert data
based on parameters such as:

o A particular sensor when you are using a central database to log data from many Snort
Sensors.

o Time of alert using start and ending time. This is very useful if you want to look at alerts
that occurred within a specific period of time.

« Source and destination addresses.

o Different fields in the IP packet header.

« Transport layer protocols.

« String of data in the payload area of the IP packet.

If you look at the screen shot shown in Figure 6-7, you can see that searching for data in the

database is very easy. All the criteria that you specify in this screen are translated to a SQL

statement that is passed to the MySQL database server. Results of your query are displayed when

you click the "Query DB" button.

For example, if you want to search all alerts for which the signature field contains the string
"ATTACK RESPONSE", you can fill out information as shown in Figure 6-8.

Figure 6-8. Searching for all alerts that contain "ATTACK RESPONSE" string in
the signature.

170

[Back]

Added 0 alertis) to the Alen cachs

Meta Criteria

Sortorder: © none| © imestamp (ascend) | © tmestamp (descend) | © signature

QueryDB_|

[Leaded in 0 seconds]

The result of this search is shown in Figure 6-9, where all alerts containing this string are
displayed. You can click a particular alert line to find out more information about that alert.

Figure 6-9. Result of query used in Eigure 6-8.

171

Hema

so Query Results Sewch | AG Maimnance

[Back]
Added 50 alenis) to the Aler cachs

Querled DB on Tue Decerder 24, 2002 2001205

Signature contains "ATTACK
Meta Criteria i) e SR

Sensors
Unigque Alerts (classifications |
Urigque addrasses source | destination

® & & & & & @

Ny Unigue [P links
Source Poft TCP |UDP
Bl none
- Destination Port TCP | UDP
any Time profile of alens

Displaying alerts 1.6 of 6 total

Signature Timestamp m:hj";""t
r RO41- ATTACK RESPONSES idcheck 024224 - 255 256 255255
607) e J01002 192.168.1,2 CMP
r #l41- ATTACK RESPOMSES id chatk 21224 2565255 255 255 j62 168.1.2 ICHP
&08) refumead root 201002 el & =
I W24l ATTACK RESPONSES id check 20021224 256, 255 2556255
= 192 1681,
&0} reduEmed root 01003 e e
C #31- ATTACK RESPOMSES id chack 2002-12.24 255.2565.265.255 a6 4
192.168.1 4
&10) refumed root 201003 68.1.2 IChP
m #441- ATTACK RESPOMNSES id check 20021224 255,256 255255
] 1
&11) refumed root 201003 widtlaiais ICHE
r #54{1- ATTACK RESPOMSES id check 021224 256.265.266.255 FErn -
612) retimed roat 2010.03 WaAGEdS I
Action
[{ =ction} B Selected | ALLonScreen | Entire Cusry |
[Loaded in 0 seconds]

y | Ao Dyl ke AWCERT =

I would strongly recommend spending some time with the search methods of ACID to get
acquainted to it.

Snort can also be used to find fully qualified names for source and destination addresses found in
captured data. Figure 6-10 shows unique destination IP addresses and hostnames. For the sake of
this screen shot and to create some data in the database, | had to use a rule that creates an alert
for all outgoing HTTP requests. Of course it is not intrusion activity, but it does provide some
data in the Snort database.

Figure 6-10. Unique destination addresses for alerts in Snort database.

172

H Hetscape A [=ElX]

File Edit View Go Communicaler Hll-pl
+« & A @& =2 @ S &£ 0O 3 |
Sack Forwwd Reload Home Seasch Metscape Primt Securty Shop Si0p

|| " Bokmarks M Location: ittp //192 168, 1 2/acid/acad_stat_usddr phptadde_types2 | Q0 What's Retateo
I'J o Fedd Hat Network g Training g Supporl o Satware @ Hardware o Developers o Embedded g Search o Docy

Hemp

oo Unigue Destination Address(es) e
| Eark |
Added 10 alers} o e Alerl cacha

Guered DB on - Wed July 31, 2002 1541312
Mata Critarie,
1P Critena

Layer 4 Crileria
Paryload Criteria
Displaying afers 1=-12 of 12 lotal

Dest IP aliress Faon W . e e
B3208 79151 affarm. ey medEaplexcom 1 1 1 1
B3.203.29.152 Imgfasm srv mirdiaplesccam 1 1 1 1
BAIZ3616.52 wd cnn.cam 1 4 1 1

152.168.1 .2 Lm0 Sos SolakEss 1 17 3 1
192.0640.1.100 Linatie fo resolve SoiTiess 1 H 1 1

218016120 ads welb.agdcom 1 18 1 1
207 Z5.T1.085 Linabiz o o soldmess 1 1 1 1
207.25.1.21 it cannat q F] 1 1

20T 20085155 tootar- w1 websyd aoicom 1 9 1 1

Z16.148.218.195 wan redhal com 1 3 1 1

16148, 210,097 W rdhatcom 1 B 1 1

39255250 240 Linahis #2 maoi Soaess 1 141 1 1

[Liaiedd in 1 seconds]

Roman Desrydig - GARCERT.

Eil i s wea |

6.3.5 Searching whois Databases

To get whois information about a particular address, you can click on any address and select a
particular whois database, like American Registry for Internet Numbers (ARIN) at

http://wwwe.arin.net. The response to such a query for IP address 66.236.16.52 is shown in Figure

6-11.

Figure 6-11. Response to whois query.

173

File Edit View Go Cossunicator Help

‘gias 4 2 @ < & 0 3 N
| Back Fonward Reload Home Search Neticape Print Security Shop Stop

||'| wif " Enokmarks i Loceson: fhtrp: //192 168, 1 2/acid/acid_stat_ipaddr php?ipssd 2361 .r|' 0" What's Related
| 4 Fod Hat Network g Training 42 Support 2 Soware 4 Hardware @ Developers 4 Enbodded 2 Search 4 Docu

[Back |
Added O aler(s) fo Ihe Aler cache
all alents with 64.236.16.52/3Z a2 : smerce | destinalion | sourceidesination
show: unmique alerls | porlscan ovenls
Ragistry lookup fwhaois) in: ARIN | RIPE APHIC
Extemal: DNS | wihois | SamSpate
642361652
FOOMN: warwd.cnnocom | local whols))
1 1] i [2002=-07=31 15:39:54 [2002-07-31 15:40:09 |
[Loiachisd in 1 smeonds]
Fanian Danyiig p ArCERT

s |8 N 99 (@ N2

6.3.6 Generating Graphs

Figure 6-12. Graph of alert data.

This information is very important for incident response. This is usually the first step to finding
out the owner of the attacking IP address and his/her contact number. After finding this
information, you can contact the owner to stop bad guys from probing your network.

Generating graphs is still experimental in ACID at the time of writing this book. I have included
it for the sake of introducing this interesting feature. You can go to the ACID main page where a
link is provided to generate graphs. When generating graphs, you can select data and type of

graph. For example, you can generate a line or bar graph for alerts in the last five days. Figure 6-
12 shows a sample bar graph for the alert data.

174

muEﬂ 1.r|.n Hllll|
1 - G-*‘ E 4 =2 o <+ & O3] |
|| Back Fedund Aelead Home Search Hetitape Fiine Securty Shop Saap

'3“‘ Gookmarks A Location: [http /4192 168 1 2/scid/ec1d_geaph maan phyp #| 3" Ymat's Related
!;m“mgmgwgmgm;wgmgm .‘Dnm.mﬂcrl
Ciart Type: _ Time (houn) ve. Murbor of Alerts s | Chart Pertods 7 (aweel) o |

Sare: (width x heighl) | 900 ® (MO0 Graphtype: = bar <~ Minbar < line
Coart Bogin: (hour) = | ([ay) | (o) | ean |

iu'-lm Mow) o | (day) = | (monmn) | (yea) || Graph Aiests|

W i ¥ Aot

Dala Sowrce: [dafa source (AG)) -
winimuen Threshold Valoe { ==): | 0 -1 Rotate feds Labels (90 degrees) | - - s logansme

Osphay X-axs labot avory |1 data points

Mo A0 wak specified Using a8 slens

ACID Chart
Time vs., Musbeér of Alerts
212002 0:00:00 - 0:59:59 - 07/31/2002 23:00:00 -
&7 = -
=3 =
E 559 g
- B =
E 1 =
g =7 B
- 3 2?: =~ —
148 =
T =
o = L
& i - | 4 -]
Time
=3 | | s a2 (@ 2

ACID uses the PHPLOT package on the backend side to generate these graphs. You can also use
another package, JPGRAPH in place of PHPLOT. JPGRAPH has a different licensing scheme
and there may be some restrictions for using it in commercial environment.

NOTE

The functionality described in this section is just an overview of ACID capabilities. In addition
to the tasks presented here, you can also use ACID to archive data, delete data from the database
and so on.

175

6.3.7 Archiving Snort Data

You have created a new database called snort_archive in the previous sections to archive the
data from the main Snort database. Using ACID, you can either move alerts from the main
database to the archive database or just copy them. For example, if you want to move all alerts
from the main database to the archive database, click the number next to "Total Number of
Alerts" on the main ACID page. The next page displays all of the alerts in the database. If the
number of alerts is more than 50, then only the first 50 alerts are displayed. Now you can use the
bottom part of the screen to archive the alerts as shown in Figure 6-13. Note that only the bottom
part of the browser window is shown in this figure.

Figure 6-13. Moving alerts to the archive database.

. 9’51-;“' Jﬂiﬂﬂ:ﬂﬁ#ﬁwp ggtgégm 192.168.1.1:1901 239.266.256.250:1900 LIDP
: ‘-’;59;” Jg&gﬁagm?;#sgp ;ggj?.gg_zq 192,168.1.1:1901 239.255.256.250:1900 LIDP
. 9’559?1' Jﬂﬁzﬂ:&g#ggp %gg:l?;gm 192.168.1.1:1901 239.256.256.250:1900 LDP
a E.EET" m[;:nﬂ[s'ﬁm?;rﬁmp ggg%;iza 192.168.1.1:1901 239.255.255.250:1900 LIDP
3 ;£f1' Jﬁiﬁﬂfmﬁﬁwp %3“22?'%24 192.168.1.1:1901 239.255.256.250:1900 LUDP
a 9:92?1. mﬁﬂgﬁéﬂﬁ#gﬂp ggg‘ff, ;g.zq 192.168.1.1:1901 239.255.255.250:1900 LIDP
Action
[Archive alertis) tmove) Raf] Selected ALL on Screen | Entire Guery |

[Loaded in 31 seconds]

Roman Danyliw AlrCERT

If you click the "Entire Query" button in Figure 6-13, all alerts will be moved to the archive
database. The result of this action is shown in Figure 6-14.

Figure 6-14. Result of moving alert data to archive database.

Hame

ACID Quer}\' RESUItE Search | AG Maintenance

[Back)

Added 10 alerts) o the Alart cache

Successhul ARCHWE-mowve - 80 alert(s)

SENSOrs

Unigue Alerts [classifications)
Unigque addressas: source | destination
Unigue IF links

Source Port TCP | UDF

Destination Poit TCP | UDP

« Time profile of alarts

LB

176

6.3.8 ACID Tables

When you start using ACID for the first time, it creates its own tables in the Snort database.
These tables are used for housekeeping functions of ACID. For example, you can create new
alert groups called (AG) in ACID and ACID keeps a record in its own tables. This section shows
a list of MySQL database tables before and after configuring ACID. The following is a list of
tables as they appear before using ACID for the first time.

mysqgl> show tables;

| Tables in_snort |

detail
encoding
event

flags

icmphdr

iphdr

opt

protocols
reference
reference_system
schema
sensor
services
sig_class
sig_reference
signature
tcphdr

udphdr

19 rows in set (0.01 sec)

mysqgl>

The following is a list of tables after the creation of ACID tables in the database. The user name
that was used for ACID must have permission to create new tables. Refer to Chapter 5 for
information about granting permissions.

mysql> show tables;
| Tables in_snort |

acid_ag
acid_ag_alert
acid_event
acid_ip_cache
data

detail
encoding
event

flags

icmphdr

177

iphdr

opt

protocols
reference
reference_system
schema

sensor
services
sig_class
sig_reference
signature
tcphdr

udphdr

23 rows in set (0.00 sec)

mysql>

The first four tables in the list show the newly created ACID tables.

4 SnortSnarf

SnortSnarf is another tool to display Snort data using a web interface. It is available from its web
site at http://www.silicondefense.com/software/snortsnarf/index.htm. Basically it is a Perl script
and you can run it after downloading without going through any compilation process. It can
parse Snort log files as well as extract data from MySQL database. The following command
parses /var/log/snort/alert file and places the newly generated HTML files in the
/var/www/html/snortsnarf directory where they can be viewed later using a web browser.

snortsnarf.pl /var/log/snort/alert -d /var/www/html/snortsnarf

The following command extracts data from MySQL database running on the localhost. It uses
a user name rr and password rr78x to login to the database.

snortsnarf.pl rr:rr78x@snort@localhost -d /var/www/html/snortsnarf
To get data from a database, you have to define the following parameters on the command line:

« Database user name

o Password

« Database name

e Host where database server is running

o Port number for the database server. By default the port number is 3306 and this
parameter is optional.

The general format of defining these parameters is:

user :passwd@dbname@host:port

178

You can run SnortSnarf from a cron script on a periodic basis. Figure 6-15 shows the main page
created by SnortSnarf. It provides basic information about alert data.

Figure 6-15. SnortSnarf main page.

& e S EEE
File Edit View Go Communicaler Hulp
< ¥ 3 @ 2. & < & 3 3
| Bak Forwad Reload Home Search Metscape Pt Securty Shop Stop
|'| " Bookmarks A Location: dhetp . //eonformis conformix net/anfout. alere/ ;i &7 wnat's Related

|:| 4 Fedd Hat Network g Training o# Supporl o Satware @ Hardware o Developers o Embedded g# Search o Docy
LLICON SwnortSnarfstart page
All Snort signatures
gt vOEOSIG

Signaturs section (1513 Top 20 sowce 1Ps [Top 20 dest1Ps |
181 alerrs found nsmng mpur medole SparFileinpur, with saurces:
= AnalepsmTyaleet

Earhest slest ot 10:45:23 779200 on SFIF] 12002
Lavese alert ax 15:00:17 119200 on 075 12002

[ml[wtcﬁxkimﬁsiﬂq ' Il.ﬁ.l-utnl.f:ﬂmu |lil}cm~:n |umﬂhn1:
|MA | 1GNP Packet with TTL=100 [s1d] P fa I | Summry
Mi& | Duoc Feagment bit ses [5 12 i2 i3 Summary
| g bt oot 5] | lr |

s |-:1£Tmmsbd;im - 13 1 |2 |m
|3 |01 cutgeing fud] (arachNIDS) 2 U F
2 MISE UPHE malf ormed sdvertasment [sid] [SVE] (1500 1 I Sumansry
| |

EnprSner brought to you courtesy of Silicon Defense
Anshore: Jim Hosgland and Sraagm Sraniford
Ses also the Joet Page by Marty Roesch
Page generared ot Wed Jul 31 150504 2002

Eil ! s wea |

Figure 6-16 shows the information about a particular alert that is displayed when you click a link
as shown in Figure 6-15.

Figure 6-16. Detail of a particular alert in SnortSnarf.

179

.*I.' . . . CIT oLy R .-.'.l- A > Hﬂlp
4 ¢ 3 @4 2 m S & O 3 |
H Back Forwad Relgad Home Search Matscaps Prit Securty Shop St

|.'| " Bookmarks A Location: dhttp. //eonforma conformix net/anfout. alert/sig/isigaid-1 ;i ﬁ'%aﬁ Retated
Eﬂ‘“ﬁﬂ" P T ey YRy T Ty ey Sy

ILICON SnortSnarf signature page

150 aleres with thas sagnemure nging mput modole SpanFilelnpur, with seces;

= AnailegSmTul et

Esrliest sach slert at 14:5300 099200 on ST/ F2002
Latese such aler ar 15:00: 17 119200 on 076512002

MISC UPHE mallomed sdverdsement |1 sources |1 destinsmans
Priority. 2 | Classticarion: Mise Arsck

Smarces triggering this attack signature
Fouce jl.ﬁluu{ugj la.luu:mu]}|lbau:nﬂllb&u[m|

19216811 |150 130 £ 1 |

Destinations recelving this attack signature

|Dmhnﬁ.uu B Alerts {=igh |h'duu|:m:n]} 8 Sros (sig) |!3‘mu|:|nu]}

| 028528829 |1%0 150 1 [1
SuarSuug bronghe oy couresy of Sl Delnge

See ol the Sgart Page by Murty Reesch
Page geseaaned ot Wed Jol 31 150504 2002

Ll l

Figure 6-17 shows a screen shot for searching whois databases or DNS lookup when you need to
get more information about an IP address.

Figure 6-17. Getting more information about an IP address.

180

ibai

Fil

<« < 3 &4 =2 o % & O3 4
Back Forvied Redoad Home Search Nolscaps Prind Security Shop Hop

'| . Bookmarks M Locabion: http: /feonformix. conformix net/anfont. alert 198/168/1 /e .rl ﬂ' What's Retated

'| o Ped Hat Network g Training _g# Suppont g Sotware g Hardware g Developers o Embedded g Search g Docun
s e
SILICON SnortSnarf alert page
Source: 192.168.1.1: overview
Snorpar wIZ05161

150 such alers found namg input modole SnarcFlelnpur, with sources:

= AnailegSmTul et

Enelies 14:53:000 000000 oo O8] 2002
Latese: 15:00617.119200 on (751 /2002

1 different signamures are present for S92 68 1.7 a8 o source

& 150 metances of 305

Theere are | distmet destnation IPs in the slerts of the type an this page.

Whoislokvpar [ARIN (RIFE |ARMIC |Qechmls
19216811 | DS Jockup ot | Amencsi | TRLRME | Prinetan
Waere looloup limks: | Defield | Zam Spade

This Eetng containg 150 alerta. You can

& wiew the whole [sting
» wiew & range of alems

Alerranges (sared by tine) —
WlemB’e firen i [lasr eime
ii.!.Liﬂ‘.'L 'uﬁsm.Mmmmmpmm.anawm
il#.l..!.uﬁ_ {14:58:13 009200 on (FHL2002 |]5ﬂ:l’l‘.1i§3:lﬁmm1.fm m
')

SnoreZner bronght ko vou courtesy of Siicon Defense

= | [R T |

6.5 Barnyard

Barnyard is a new tool which is intended to parse binary log files generated by Snort when you
use the unified logging module. Barnyard is still in experimental form at the time of writing this
book. You can download the latest version from the Snort web site and read the included file
about installation and use of the tool. Basically you have to carry out the following three steps to
compile and install it.

1. Run the configure script with a prefix command line parameter to define the directory
where you intend to install it. A typical command line may be “"configure —
prefix=/opt/barnyard".

Run the make command.

3. Runthe make install command to install it.

N

181

You also need to edit the barnyard.conf file before using the tool. I am omitting a detailed
discussion because the process may change significantly by the time you read this book.

WARNING

At the time of writing this book, Barnyard is still in the development process and the installation
may differ significantly in the final release of the package.

6.6 References

N~ wWNE

ACID is available from http://www.cert.org/kb/acid/

Apache web site at http://www.apache.org

PHP web site at http://www.php.net

GD library at http://www.boutell.com/gd/

PHPLOT package at http://www.phplot.com

ADODB package at http://php.weblogs.com/adodb

SnortSnarf at http://www.silicondefense.com/software/snortsnarf/index.htm

ADODB FAQ at http://php.weblogs.com/adodb_fag

182

Chapter 7. Miscellaneous Tools

At this point you have built your completely working Snort system with database backend and
web-based user interface. This chapter introduces a few useful tools that you can use with this
system to make management simple and to enhance the capabilities of your system. You will
also learn how to make your system secure. These components are briefly introduced below.

IDS Manager is a Microsoft Windows-based GUI tool to manage Snort rules and the Snort
configuration file snort.conf. Using this tool, you can carry out different tasks like:

« Downloading the current configuration file snort.conf and rules from an operational
Snort sensor.

« Modifying the configuration file and rules.

e Uploading the modified configuration to the sensor.

Using IDS Manager, you can manage multiple Snort sensors. The only catch is that it uses SSH
server, which must be running on the Snort sensor.

SnortSam is another tool that can integrate Snort with firewalls. Using this package with Snort,
you can modify firewall configuration. The usefulness of this technique is still debatable as it
may open up the firewall for denial of service (DoS) attacks.

Another topic discussed in this chapter is the security of the web server where ACID is installed.
Up to now you have not done anything to secure the web server. Anybody can access the ACID
console and delete the data collected by Snort. Here you will learn a few methods of securing the
web server itself.

7.1 SnortSam

SnortSam is a tool used to make Snort work with most commonly used firewalls. It is used to
create a Firewall/IDS combined solution. You can configure your firewall automatically to block
offending data and addresses from entering your system when intruder activity is detected. It is
available from http://www.snortsam.net/ where you can find the latest information. The tool
consists of two parts:

1. A Snort output plug-in that is installed on the Snort sensor.
2. An agent that is installed on a machine close to Firewall or Firewall itself. Snort
communicates to the agent using the output plug-in in a secure way.

At the time of writing this book, the tools support the following firewalls:
o |IP filter-based firewalls
e Checkpoint Firewall-1

e Cisco PIX
o Netscreen

183

The output plug-in, which is compiled with Snort, provides new keywords that can be used to
control firewall behavior. For compiling Snort, refer to Chapter 2.

In a typical scheme where you are using Checkpoint Firewall, you can run the SnortSam agent
on the firewall itself. Figure 7-1 shows a typical scheme where a Snort sensor is controlling two
Checkpoint firewalls. These firewalls may be running on Linux, Windows or other UNIX
platforms supported by Checkpoint.

Figure 7-1. Running SnortSam on Checkpoint Firewall.
Checkpoint

. Firewall with
; SnortSam

Snort Sensor

Checkpoint

Firewall with

Snortsam
Agent

In a typical situation where you don't have a Checkpoint firewall, you will run the agent on
another system, located close to the firewall. Depending on the type of your firewall, you will
add plug-ins to the SnortSam agent to control a particular type of firewall. For example, to
control a Cisco router access list, you will use the relevant plug-in available from the SnortSam
web site. The scheme is shown in Figure 7-2 where the sensor sends messages to the agent
system where the SnortSam agent is running. The agent system will then update configuration of
the firewall or routers depending on the policy.

Figure 7-2. Running SnortSam with a separate agent to control multiple firewalls.

184

Cisco PIX
Firewall =l SnortSam

Agent

Cisco Router

Snort Sensor

Netsereen
Firewall

Documentation, examples, and information about how to install SnortSam are available on its
web site. You can find information about the changes you need to make for a particular type of
firewall in the snort.conf file. You should think twice about modifying firewall policy; it may
lead to Denial of Service (DoS) attacks. For example, if someone sends you a message resulting
in the blocking of root name server addresses, your DNS server will fail.

7.2 IDS Policy Manager

IDS policy manager is a Microsoft Windows based GUI. It is used to manage the Snort
configuration file and Snort rules on a sensor. It is available from its web site
http://activeworx.com/idspm/. At the time of writing this book, beta version 1.3 is available from
this web site and it supports Snort versions up to 1.9.0. You can download the software and
install it using normal Windows installation procedures. When you start the software, a window
like the one shown in Figure 7-3 is displayed.

Figure 7-3. IDS Policy Manager Window.

185

f.l’.l:l:wl:'n'ul’nr:u:- IDS Palicy Manager F :lglﬁl
Fla Sensor Oplors Halp

Hame | Policy Statuz [Palicy | 1P Address [wersion Infc

| | ll
L Smungiﬁ Pokcy Marwges | £4] Logging

Aeteswions - [OV5 Pobcy Manager [

5

As you can see, this window is initially empty. It has three tabs at the bottom, as explained below:

e The "Sensor Manager" tab shows the sensors that you are managing with this tool.
Initially there is no sensor listed in the window because you have to add sensors after
installing IDS Manager. This is the default tab when you start the Policy Manager.

e The "Policy Manager" tab shows configured policies. A policy includes snort.conf file
parameters (variables, input and output plug-ins, include files) as well as a list of rules
that belong to that policy.

e The "Logging" tab shows log messages.
You can click on any of these tabs to switch to a particular window. To add a new sensor, you
can click on the "Sensor" menu and chose the "Add Sensor" option. A pop-up window like the
one shown in Figure 7-4 appears where you fill out information about the sensor.

Figure 7-4. Adding a new sensor to IDS Policy Manager.

186

. Edit Sensor X

Senzar Mame: [MyHome Sensor

— Senzor Infarmatian

IP &ddress of Sensor: |1 92 168.1.2 Hesnlvel
IDS Syster: ISnu:urH.El j
Policy: | Oficial =

— Upload Infarmatiar

lIpload Protocal: IS.:F. j Part: |22

Uzername: |r|:u:|t

Paszword: I xxxxxxxx
Pazsword[Confirm): | xxxxxxxx

Upload Directory: |/optésnant/etc/
YWCP Optionz |

k. Cancel |

The screen shot shown in Figure 7-4 is taken after filling out information in blank fields. You
have to enter the following information about a sensor:

e Sensor name, which is "MyHome Sensor" in this example.

e IP address of sensor which is 192.168.1.2. You have to fill out the IP address of your
sensor in this box.

e The "IDS System" box is used to specify which version of Snort is being used on the
sensor. Different Snort versions have slightly different parameters for input and output
plug-ins as well as keywords used in rules. It's important to use correct information in
this option.

e The policy name is "Official". You can use a different name for the policy. The sensor
policy is downloaded and stored on the machine where IDS Policy Manager is being
installed.

e The "Upload Information" section includes parameters that are needed to transfer files
from and to the sensor.

e The SCP method uses SSH server running on the sensor. User name and password are
used to log in to the Snort sensor to upload and download files. The "Upload Directory"
shows the location of the snort.conf file on the Snort sensor. Since the location of other
rule files is mentioned in the snort.conf file, you don't need to specify names and
locations of other rule files.

187

After entering this information, you can click "OK" to add the sensor. After adding the sensor,
the first task is to download policy from the sensor you added in the previous step. For this
purpose, you can use the "Download Policy from Sensor" option in the "Sensor" menu. After
downloading the policy, you can click on the "Policy Manager" tab at the bottom of the screen to
edit the policy. When you click here, you will see the screen with a list of currently available
policies. Since you used "Official™ as the name of the policy while adding the sensor, this policy
must be present in the list.

To edit the policy, double click the policy name and a Policy Editor window will appear, as
shown in Figure 7-5.

Figure 7-5. The Policy Editor window with list of rules.

= Palicy Editer - Dificial N =101 =]
Fis View Opbions Help
SCan &
Sigrahuet |'§,ﬁv|
Fobder It M| | Hawe =y
« O badalf: =] | LastModied Dte: [
- Bies Bl e B
* I:I-:\-jl'--n-r Holichvefider [
o E 'lp
v] toleet Banie Desclony SALLE_FATH? Set A Ginups
< B e Drazcrplion
- E.ﬂ i Theia dxgraatuie Sie ispiehrdines of rebeod sanrers. These
[g dex reciiucds port grannarg, § nappEng, and varos application prannen
+ [F] ddex HOTE: Tihiv does NUT mclude wes soanmnen wch o ehasier.
1 E_.‘ﬂ o Tharte aie 1 weh
i E:ﬂlllp
. n_ﬂ warkip
& @ veetcokliuzion
w0 g] webii
v E_ﬂ werds hionipags Sorisiure Haie Actiorns | Probocel | Sousce IP/Pot | Dupsciaon | Duestrabur IP/Fori | Cl=
& n_ﬂ warksmice: ELAM vy it g SETEARAL_RET A @ FHOME _HET fary
v E_ﬂ verki-chunl il SCAM mherad wtzaon iegs bt =4 $ERTERRAL_KET faryg @ JHOME _HETA13 atl
+ [H] weebphn SEAN wibvielemchrsCae s p EERTERHAL HKET/wy # fHOME_MET/Z2 o
+ Bl =l T 50aM cpbercop ox probe et iep HENTERHAL_HET/ary + $HOME _MET /0 al
x. E-.ﬂ =11 =TSN Tormwf Prri st e irn f'ﬂ’rFFlliﬂl KET i ™ AHNME MET W -
s B e | 2
Totglfules: 173 Aules Ensbled 1273 |Fudes File: C:\Progess Files\acomwondd) Ficialanodt cond i

On the left hand side of the window shown in Figure 7-5 is a list of different classes of rules used
on the sensor. The right hand side of the window shows a description of the class and individual
rules included in that class. To modify a rule, you can double click that rule and a window like
the one shown in Figure 7-6 will appear where you can modify different parts of a rule.

Figure 7-6. Modifying a rule in IDS Policy Manager.

188

= Policy Editor - Dfficial =10 =]

Fis View Oplions Help

BAD TRAFFIC tep port O traffic |
Sigratars | Seitngs | . T sgesiure | @ Srent |

Fold oz | B oo T

= O badaaitic a

: Sigrahutn 1D |_-:_'-.-. Signahan Aavson !
ST BAD TRAFFIC up pest falhe i
oo

e EAD TRAFFIC loopbach. baff =) ove-1 FHR0ETS
[el BAD TRAFFIC same SRCDST resus]

EBAD TRAFFIC ke lag bits .
3 BAD TRAFFIC Urassgrad P [Signature -

BAD TRAFFIC HonStardud Pp. | | Aton Protocal Clasicsion Proaty

Bl BAD TRAFFIC s bo mabicast ade [t = i) =) {2
- E i | Souace ®Mask P Dinction Diestnation P/Mask Pt
O] finges | [rExTermaL NET =] [[=] [womE _NET =1
i B e | e Dpior:
L E. telnet ||
- Eﬁnﬁ {
i [i romivnonn | Rk e
= [dos '|
i 7 el ddow =
i | L] -]

[Totsi Ruler 1733 [ubes Erablect 1270 | Flukes File: C-\Progesm FileshAotveword\Dficialamost cont o

The pull-down menus in the right side of the window shown in Figure 7-6 make it very easy to
modify rules. For example, to modify protocol used in the rule, you can click the pull-down
menu button and a list of supported protocols will appear.

To modify other parts of the snort.conf file, you can click the "Settings"” tab on the top left side
of the window. A window like the one shown in Figure 7-7 appears where you can modify input
and output plug-ins and values of different variables.

Figure 7-7. The Policy Editor window with snort.conf settings.

BT _—_—_—_— =l
Fis Vies Ophions Help
Lagging £ I
Spstuss Seegs | T e | F Datsbar I OS5V Loggrg
‘“H"::m ¥ | | Py [ommn =] SenxHees [i.qﬂ:
oFpuastha T’ pa i Ve
ﬁ Frixity LOG_ALERT vl DE Harex Aol
muuw Gptine | DB T m Seftinge: [~ Diefeuk Settirge
Cusiom LOG_CORS [~ LOG_MOELAY [o — Otmestarp O secpent
LOG_PERROR I LDG_FID r _ Em E:ﬂ
||| togfuetpe [=] ek ot
| i Oue O ethare
T~ =ML Logging - 7 | Dot ([Ls i |
PueTwe [=] e T
Pasvetst: [Rosiefogimoted | aPme [T | (T Usiedlaggna
e — L S
LogFie [icpchemiog 6 Port] — E
[TotalFlues 1730 Rubss Ensbledt 175 Rudes Fie: [\Program Flashicthemood Oicishano cond e

As you can see in the screen shot in Figure 7-7, the database user name and passwords are
displayed. These are the same ones we used in Chapter 5 while configuring the MySQL database.

189

After making changes to the policy, you can close this window. Now you can upload it to the
sensor using options in the "Sensor" menu of the main menu.

IDS Policy Manager makes it very easy to modify sensor policies. It does almost all of the tasks
that are discussed in Chapter 3 and Chapter 4.

7.3 Securing the ACID Web Console

As you have seen in Chapter 6, ACID is a very useful tool for viewing and managing data
generated by the Snort sensors. However, there is one issue that is not yet resolved—security of
ACID. If the web server running ACID is not secure, anybody can go to the ACID web pages
and modify, archive, and delete data in the database using ACID. As you have seen, the user
name and password are hard coded in the ACID configuration file acid_conf.php and the
person viewing ACID web pages does not need to know the database user name and password to
delete information from the database. There are multiple methods that you can adopt to achieve
security.

7.3.1 Using a Private Network

There are different ways to make ACID secure. One way is to use a private network for all Snort
sensors and the centralized database server where ACID and Apache are installed so that their IP
addresses are not visible from the Internet. This scheme is still vulnerable to the internal users
who have access to this private network.

7.3.2 Blocking Access to the Web Server on the Firewall

Another method is to block access to your web server from the firewall so that nobody from the
Internet can access the web server. Again this scheme is still vulnerable to internal users.

7.3.3 Using iptables

Another way is to use iptables to allow only your own computer to access port 80 on the web
server. This is the most secure method because it protects your web server and ACID from both
internal and external users. You can use a simple command to block all incoming connections
except your own workstation, which has an IP address 192.168.1.100.

iptables -A INPUT -s ! 192.168.1.100 -j DROP

The command is case sensitive. This command blocks all connections except ones from host
192.168.1.100, which is your own workstation where you use the web browser. This is not a
comprehensive tutorial on how to use the iptables command. You can either use the "man
iptables" command to get more information about iptables-based firewalls or read Rusty's
guide for iptables at http://www.netfilter.org/unreliable-guides/packet-filtering-
HOWTO/index.html.

190

Once you use the above command, nobody from any other host will be able to access ANY
service on the machine where you used this command. All existing connections will be dropped.
You are warned!

7.4 Easy IDS

Easy IDS is an integrated system available from http://www.argusnetsec.com for the Linux
operating system. It has all of the necessary components to build a complete IDS quickly. These
components are precompiled and configured for easy installation. The package includes:

Snort

Apache Web server
MySQL server
ACID

PHPLOT

ADODB

The installation script installs all of these components and creates startup and shutdown script
links. This is a good choice for people who want to get something running quickly. At the time
of writing this book, you have to ask for an evaluation CD from the company to test it. It may be
available for free download from the company web site in the future.

7.5 References

SnortSam at http://www.snortsam.net/

Activeworx web site at http://activeworx.com/idspm/

Rusty's Unreliable Guides at http://www.netfilter.org/unreliable-guides/
Easy IDS at http://www.argusnetsec.com

PwnhE

191

T e T e e e

Appendix A. Introduction to tcpdump

Tcpdump is a packet capture tool. It can grab packets flowing on the network, match them to
some criteria and then dump them on the screen or into a file. It is available on most of the UNIX
platforms. On Linux machines, you need to be the root user to run tcpdump. If you save the
captured data in a file, you can view the file later using tcpdump. Since Snort can also store data
in the tcpdump format in files, it becomes an interesting tool for many people to view Snort files
that have been created in the tcpdump format.

The typical output of the command when used on the command prompt without any argument is
as follows:

[View full width]

[root@conformix]# tcpdump

Kernel filter, protocol ALL, TURBO mode (575 frames), datagram packet socket
tcpdump: listening on all devices

13:05:52.216049 ethO < rr-laptop.6001 > dti414.1245: P
1578894642:1578894674(32) ack

3347166818 win 63520 <nop,nop,timestamp 453029 53292014> (DF)
13:05:52.216049 ethO > dti414.1245 > rr-laptop.6001: . 1:1449(1448) ack 32
win 63712 <nop

,hop,timestamp 53292021 453029> (DF)

13:05:52.216049 ethO > dti414.1245 > rr-laptop.6001: P 1449:2045(596) ack 32
win 63712

<nop,nop,timestamp 53292021 453029> (DF)

13:05:52.216049 ethO < rr-laptop.6001 > dti414.1245: . 32:32(0) ack 2045 win
64240 <nop

,hop,timestamp 453029 53292021> (DF)

13:05:52.226049 ethO > dti414.1245 > rr-laptop.6001: . 2045:3493(1448) ack 32
win 63712

<nop,nop,timestamp 53292022 453029> (DF)

13:05:52.226049 ethO > dti4l1l4.1245 > rr-laptop.6001: P 3493:4089(596) ack 32
win 63712

<nop,nop,timestamp 53292022 453029> (DF)

13:05:52.226049 ethO < rr-laptop.6001 > dti414.1245: . 32:32(0) ack 4089 win
64240 <nop

,hop,timestamp 453029 53292022> (DF)

You can use a number of command line switches with the command. A list of switches is
available on the manual pages. The important switch to use with Snort is -r <filename>, where
filename is the file containing Snort data. Simple Snort log files can't be used with this option.
Only the files that are created in the tcpdump format can be read by the command.

Appendix B. Getting Started with MySQL

MySQL is probably the most popular open source database. It is available for Linux and you can
download and install it on your Linux machine. The package is available in source code format
as well as binary files. The easiest way to install it is to download the RPM file and install it on

192

your Linux machine. I have used RedHat Linux 7.1 on my machine and installed the MySQL
package that came with it.

MySQL has two basic parts, the server and the utilities used to administer the server and connect
to it. If you install the RPM package, the startup script will be copied into the 7etc/init.d
directory which you use to start the database at boot time. Client utilities are available to manage
the database.

MySQL is an easy database to use. This appendix contains some very basic commands that you
can use to get started with the database. This is not a MySQL manual or tutorial by any means.
Comprehensive information about MySQL can be obtained from http://www.mysql.com/doc/
web site.

For New Users of MySQL

The MySQL server daemon, mysqld, can be started using the startup script. It listens to incoming
connection requests from clients. The package comes with mysql client program that you can use
to connect to the database and carry out some system administration tasks as well as
add/update/delete records in the database. You can have multiple databases and at the time of
connection you can define to which database you want to connect.

Starting and Stopping MySQL Server

You can start and stop MySQL Server using startup script Zetc/init.d/mysqgld on Linux
machines. This script is shown below:

#1/bin/bash

mysqld This shell script takes care of starting
and stopping
the MySQL subsystem (mysqld).

chkconfig: - 78 12
description:MySQL database server.
processname: mysqld

config: /Zetc/my.cnf

pidfile: /var/run/mysqld/mysqld.pid

H OHHHFEHHFHHEHHHR

Source function library.
. /etc/rc.d/init.d/functions

Source networking configuration.
. /etc/sysconfig/network

Source subsystem configuration.
[-f Zetc/sysconfig/subsys/mysqld] && . Zetc/sysconfig/subsys/mysqld

prog=""MySQL"

193

start(){

touch /var/log/mysqld.log
chown mysql .mysqgl /var/log/mysqld.log
chmod 0640 /var/log/mysqld.log
if [! -d /var/lib/mysql/mysql] ; then

action $"Initializing MySQL database: " Zusr/bin/mysql_install_db

ret=%$?

chown -R mysqgl.mysql /var/lib/mysql

if [$ret -ne 0] ; then

return $ret

fi
fi
chown mysql.mysqgl /var/lib/mysql
chmod 0755 /var/lib/mysql
/usr/bin/safe_mysqld --defaults-file=/etc/my.cnf >/dev/null 2>&1 &
ret=$?
if [$ret -eq 0]; then

action $"Starting $prog: ' /bin/true
else

action $"Starting $prog: " /bin/false

fi
[$ret -eq 0] && touch /var/lock/subsys/mysqgld
return $ret

}
stop(O{
/bin/kill “cat /var/run/mysqgld/mysqld.pid 2> /dev/null = > /dev/null
2>&1
ret=$?
if [$ret -eq 0]; then
action $"Stopping $prog: ' /bin/true
else
action $"Stopping $prog: ' /bin/false
fi
[$ret -eq 0] && rm - /var/lock/subsys/mysqld
[$ret -eq 0] && rm - /var/lib/mysql/mysql .sock
return $ret
}
restart(){
stop
start
}
condrestart(){
[-e /var/lock/subsys/mysqld] && restart ||
}
reload(){
[-e /var/lock/subsys/mysqgld] && mysqladmin reload
}

See how we were called.
case "$1" in
start)
start

stéé)

194

stop
status)

status mysqgld
reload)

reload
restart)

restart

condrestart)
condrestart

*

echo $"Usage: $0 {start|stop]|status|reload|condrestart|restart}"
exit 1
esac

exit $?
To start the server, use the following commands:

/etc/init.d/mysqld start

When you start MySQL for the first time, you will see the following messages on your screen:

[root@conformix /root]# /etc/init.d/mysqld start
Initializing MySQL database: [OK 1]
Starting MySQL: [oK 1]
[root@conformix /root]#

The next time you start MySQL, it will not show the first line of output because it only needs to
initialize its own database the first time you start it.

To stop the database, use the following command:
[root@conformix /root]# /etc/init.d/mysqld stop

Stopping MySQL: [OK 1]
[root@conformix /root]#

If the script is not available on your platform, you can create a similar script yourself for your
particular UNIX platform.

MySQL Server Configuration File

At startup time, the server uses its configuration file 7etc/my.cnf as mentioned in this startup
script. The default configuration file that came with my distribution of Linux 7.1 is shown below:

[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysqgl .sock

195

[mysql.server]
user=mysql
basedir=/var/lib

[safe _mysqld]
err-log=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid

Database Storage Files

Each database is stored in a directory under /var/lib/mysql top level directory (configurable
through my . cnf file). For example, if you use "snort" as the database name, all files in this
database will be located in the directory /var/l1ib/mysql/snort. You have used a script to
create tables in this database in Chapter 5. The typical contents of this directory after creating all
tables is as follows:

[root@laptop]# Is -1 /var/lib/mysqgl/snort

total 4080

—-rw-rw-—--- 1 mysql mysql 8614 Apr 30 14:30 data.frm
—-rw-rw-—--- 1 mysql mysql O Apr 30 14:30 data.MYD
-rw-rw---- 1 mysql MYSQL 1024 Apr 30 14:30 data.MYI
-rw-rw---- 1 mysql mysql 8606 Apr 30 14:30 detail._frm
-rw-rw---- 1 mysql mysql 40 Apr 30 14:30 detail .MYD
—-rw-rw-—--- 1 mysql mysql 2048 Apr 30 14:30 detail.mMYl
—-rw-rw-—--- 1 mysql mysql 8614 Apr 30 14:30 encoding.frm
-rw-rw---- 1 mysql mysql 60 Apr 30 14:30 encoding.MYD
-rw-rw---- 1 mysql mysql 2048 Apr 30 14:30 encoding-MYl
-rw-rw---- 1 mysql mysql 8642 Apr 30 14:30 event.frm
—-rw-rw-—--- 1 mysql mysql 0 Apr 30 14:30 event.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 event.MmYl
-rw-rw---- 1 mysql mysql 8802 Apr 30 14:39 flags.frm
-rw-rw---- 1 mysql mysql 17476 Apr 30 14:39 flags-MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:39 flags.MYI
—-rw-rw-—--- 1 mysql mysql 8738 Apr 30 14:30 icmphdr.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 icmphdr.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 icmphdr.mYl
-rw-rw---- 1 mysql mysql 8920 Apr 30 14:30 iphdr.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 iphdr.MYD
—-rw-rw-—--- 1 mysql mysql 1024 Apr 30 14:30 iphdr.mYl
-rw-rw---- 1 mysql mysql 8728 Apr 30 14:30 opt.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 opt.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 opt-MYI
-rW-rw——-- 1 mysql mysql 8624 Apr 30 14:39 protocols.frm
—-rw-rw-—--- 1 mysql mysql 6248 Apr 30 14:39 protocols.MYD
-rw-rw-—--- 1 mysql mysql 1024 Apr 30 14:39 protocols.MYI
-rw-rw---- 1 mysql mysql 8630 Apr 30 14:30 reference.frm
-rw-rw-—--- 1 mysql mysql O Apr 30 14:30 reference.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 reference.MYI
—-rw-rw---- 1 mysql mysql 8618 Apr 30 14:30 reference_system.frm
-rw-rw-—--- 1 mysql mysql 0 Apr 30 14:30 reference_system.MYD
-rw-rw-—--- 1 mysql mysql 1024 Apr 30 14:30 reference_system.MYI
-rw-rw---- 1 mysql mysql 8580 Apr 30 14:30 schema.frm
-rw-rw---- 1 mysql mysql 13 Apr 30 14:30 schema.MYD
—-rw-rw-—--- 1 mysql mysql 2048 Apr 30 14:30 schema.MYl

196

-rw-rw—-—-- 1 mysql mysql 8706 Apr 30 14:30 sensor.frm
-rw-rw---- 1 mysql mysql 0 Apr 30 14:30 sensor.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 sensor._MYl
-rw-rw---- 1 mysql mysql 8648 Apr 30 14:39 services.frm
-rw-rw--—-- 1 mysql mysql 3686536 Apr 30 14:39 services.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:39 services.MYl
-rw-rw---- 1 mysql mysql 8614 Apr 30 14:30 sig_class.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 sig_class_MYD
-rw-rw----— 1 mysql mysql 1024 Apr 30 14:30 sig_class.MYl
-rw-rw---- 1 mysql mysql 8730 Apr 30 14:30 signature.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 signature.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 signature.MYI
-rw-rw---- 1 mysql mysql 8616 Apr 30 14:30 sig_reference.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 sig_reference.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 sig_reference.MYl
-rW-rw—-—-- 1 mysql mysql 8888 Apr 30 14:30 tcphdr.frm
-rw-rw---- 1 mysql mysql 0 Apr 30 14:30 tcphdr.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 tcphdr._myl
-rw-rw---- 1 mysql mysql 8704 Apr 30 14:30 udphdr.frm
-rw-rw---- 1 mysql mysql O Apr 30 14:30 udphdr.MYD
-rw-rw---- 1 mysql mysql 1024 Apr 30 14:30 udphdr.mYl
[root@laptop]#

As you may have figured out, there are three files related to each table in the database. To find

out how many databases are present on your system, just list the directories under
Jusr/lib/mysql.

Basic MySQL Commands

This section presents some very basic MySQL commands. These commands are required to do
basic operations with the database.

Creating a Database

First of all you have to login to create a database. You can login as user "root™ to MySQL server
as shown below. This root user is not the Linux root user. It is related to MySQL database only.

[root@conformix /root]# mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 3.23.36
Type “help;® or "\h® for help. Type "\c" to clear the buffer

mysql>
At the mysql> prompt, you can use MySQL commands. The following command creates testdb.

mysql> create database testdb;
Query OK, 1 row affected (0.01 sec)

mysql>

197

When you create a database, a directory is created under /var/1ib/mysql to store database files.
In this case the name of the directory is /var/1ib/mysgl/testdb.

Displaying a List of Databases

At the command prompt, you can use the show databases command to list available databases.

mysqgl> show databases;

o +
| Database |
T —— +
I mysql I
| test |
| testdb |
Fom e +

3 rows in set (0.00 sec)

mysql>

This command shows that three databases exist. The names of these databases are mysqgl, test
and testdb.

Connecting to a Database

To connect to a database, you can use the use command by providing the name of the database
as the argument to this command. The following command starts using testdb as the database.

mysqgl> use testdb;
Database changed
mysql>

In some cases you can also use the following command:

mysqgl> connect testdb
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Connection id: 3
Current database: testdb

mysqgl>

Creating Tables

The following command creates a table with the name customer. The table contains four
columns.

[View full width]

mysql> create table customers (name varchar(20), address varchar(40), phone
varchar(10),

198

dob date);
Query OK, 0 rows affected (0.00 sec)

mysql>

Column names and their data types are defined in the command. When you create a table, three
files are created in the directory that corresponds to the database. In this case, files are created in
/var/lib/mysql/testdb directory as shown in the following command.

[root@conformix]# Is /var/lib/mysql/testdb
customers.frm customers.MYD customers.MYI
[root@conformix]#

The names of these files start with the name used for the table.
Listing Tables

The show tables command lists currently defined tables in the database.

mysqgl> show tables;

S S +
| Tables in_testdb |
o +
| customers |
T +

1 row in set (0.01 sec)
mysql>

Displaying Table Information

You can display information about each table column by using the describe command. The
following command displays information about recently created table customers.

mysql> describe customers;

Fom e o o —_—— e o o +
| Field | Type | Null | Key | Default | Extra |
Fommmemmem Fo e - e —— R S —— +
| name | varchar(20) | YES | | NULL | |
| address | varchar(40) | YES | | NULL | |
| phone | varchar(10) | YES | | NULL | |
| dob | date | YES | | NULL | |
Fommmemmem Fo e - e —— R S —— +

4 rows in set (0.01 sec)
mysql>

Adding Data to Tables

Data can be added to a table using the insert command. The following command adds one row
to the customers table.

199

mysql> insert into customers values ("Boota®", "135 SB,
Sargodha®, "001-946-15", "1970-01-01%);
Query OK, 1 row affected (0.06 sec)

mysql>

Displaying Data in Tables

The select command retrieves data from one or more tables. In its simplest form, the following
command displays all records in the customers table.

mysgl> select * from customers;

T TSy Ry Sy S S o o +
| name | address | phone | dob |
Fom—— Fme Fom e — Fom e — +
| Boota | 135 SB, Sargodha | 001-946-15 | 1970-01-01 |
o ——_—— T e e +

1 row in set (0.00 sec)

mysql>
For more information on the select command, use any SQL language reference.
Deleting Data from Tables

The delete command removes data from the table. The following command deletes records
from the customer table where the name of the customer is Boota.

mysqgl> delete from customers where customers.name="Boota";
Query OK, 1 row affected (0.00 sec)

mysql>

Switching from One Database to Another

You can use the use commands to switch to another database. The following command starts
using mysgl-test database.

mysqgl> use mysqgl-test
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql>

Creating a User

The simplest way to create a user is to grant the user some access rights to a database. If the user
does not already exist, it will be created. The following command creates a user rrenhman and
grants all access rights on the testdb database.

200

mysql> grant all on testdb.* to rrehman;
Query OK, 0 rows affected (0.00 sec)

mysql>

This command creates a row in the user table in mysql database for user rrehman and grants
permission for everything to user rrehman on database testdb.

Setting Password for a User

You can assign a password to the user upon creation. The following command creates a user
rrehman and assigns a password boota.

grant all on testdb.* to rrehman identified by "boota-;

To assign a password later on, use the following command:

mysqgl> set password for rrehman = password("kaka®);
Query OK, 0 rows affected (0.00 sec)

mysql>

Granting Permissions

The grant command is used to grant different levels of permissions to users. Refer to the
following command where different permissions are assigned to a user rr on localhost.

mysql> grant CREATE, INSERT,DELETE,UPDATE,SELECT on snort.* to rr@localhost;
Query OK, O rows affected (0.00 sec)

mysql>
Using mysqgladmin Utility

The mysqgladmin utility is used for database administration. A complete discussion is beyond the
scope of this book. The following output of the command shows some of the tasks that it is
capable of doing.

[root@conformix /root]# mysqgladmin

mysgladmin Ver 8.18 Distrib 3.23.36, for redhat-linux-gnu on 1386
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license

Administration program for the mysqld daemon.
Usage: mysqladmin [OPTIONS] command command....

-#, —--debug=... Output debug log. Often this is "d:t:o,filename”
-f, --force Don®"t ask for confirmation on drop database; with

multiple commands, continue even if an error occurs
-?, —--help Display this help and exit

201

-—character-sets-dir=...
Set the character set directory

-C, --compress Use compression in server/client protocol
-h, --host=# Connect to host
-p, —-password[=...] Password to use when connecting to server
IT password is not given it"s asked from the tty
-P —-port=... Port number to use for connection
-1, —--sleep=sec Execute commands again and again with a sleep between
-r, —-relative Show difference between current and previous values

when used with -i. Currently works only with
extended-status

-E, --vertical Print output vertically. Is similar to --relative,
but prints output vertically.

-s, —-silent Silently exit if one can”"t connect to server

-S, --socket=...Socket Ffile to use for connection

-t, —-timeout=...Timeout for connection to the mysqgld server

-u, —--user=# User fTor login if not current user

-V, —--verbose Write more information

-V, --version Output version information and exit

-w, —-wait[=retries] Wait and retry if connection is down

Default options are read from the following files in the given order:
/etc/my.cnf /var/lib/mysgl/my.cnf ~/_my.cnf

The following groups are read: mysqladmin client

The following options may be given as the first argument:
—-—print-defaults Print the program argument list and exit
--no-defaults Don"t read default options from any options file
-—defaults-file=# Only read default options from the given file #
--defaults-extra-file=# Read this file after the global files are read

Possible variables for option --set-variable (-0) are:
connect_timeout current value: 0
shutdown_timeout current value: 3600

Where command is a one or more of: (Commands may be shortened)
create databasenameCreate a new database
drop databasenameDelete a database and all its tables

extended-status Gives an extended status message from the server

flush-hosts Flush all cached hosts

flush-logs Flush all logs

flush-status Clear status variables

flush-tables Flush all tables

flush-threads Flush the thread cache

flush-privileges Reload grant tables (same as reload)

kill id,id,... Kill mysgl threads

password new-password Change old password to new-password

ping Check 1T mysgld is alive

processlist Show list of active threads in server

reload Reload grant tables

refresh Flush all tables and close and open logfiles

shutdown Take server down

status Gives a short status message from the server

start-slave Start slave

stop-slave Stop slave

variables Prints variables available

version Get version info from server
[root@conformix]#

202

You can use different options on the command line. For example "mysgladmin version™ will
show the version number for the utility.

Appendix C. Packet Header Formats

Snort rules use the protocol type field to distinguish among different protocols. Different header
parts in packets are used to determine the type of protocol used in a packet. In addition, rule
options can test many of the header fields. This appendix explains headers of different protocols.
These packet headers are explained in detail in RFCs. Understanding different parts of these
packet headers is very important for writing effective Snort rules.

IP Packet Header

The basic IPv4 header consists of 20 bytes. An options part may be present after these 20 bytes.
This optional part may be up to forty bytes long. Structure of IP header is present in Figure C-1.

Figure C-1. IP header

v IHL TOS Total Length
D F Frag Offset
TTL Protocol Header Checksum

Source Address

Destination Address

Detailed information about the IP packet header can be found in RFC 791 which is available
from ftp://ftp.isi.edu/in-notes/rfc791.txt and many other places including the RFC editor web site.
A brief explanation of different fields in the IP packet header is found in Table C-1.

Table C-1. IP Packet Header Fields

Field Explanation
\Y Version number. The value is 4 for IPv4. Four bits are used for this part.
IHL This field shows length of IP packet header. This is used to find out if the options

part is present after the basic header. Four bits are used for IHL and it shows
length in 32-bit word length. The value of this field for a basic 20-bytes header is

5.

TOS This field shows type of service used for this packet. It is 8 bits in length.

Total Length This field shows the length of the IP packet, including the data part. It is 16 bits
long.

ID This field packet identification number. This part is 16 bits long.

203

Table C-1. IP Packet Header Fields

Field Explanation
F This part is three bits long and it shows different flags used in the IP header.
Frag Offset This part is thirteen bits long and it shows fragment offset in case an IP packet is
fragmented.
TTL This is time to live value. It is eight bits long.
Protocol This part shows transport layer protocol number. It is eight bits long.
Header This part shows header checksum, which is used to detect any error in the IP
Checksum header. This part is sixteen bits long.
Source This is the 32 bit long source IP address.
Address
Destination This is the 32 bit long destination IP address.
Address

ICMP Packet Header

ICMP header is completely explained in RFC 792, which is available from ftp://ftp.isi.edu/in-
notes/rfc792.txt for download. Figure C-2 shows basic structure of ICMP header. Note that
depending upon type of ICMP packet, this basic header is followed by different parts.

Figure C-2. Basic ICMP header

Type Code Checksum
ICMP Information

An explanation of the fields in a basic ICMP header is provided in Table C-2.

Table C-2. ICMP Packet Header Fields

Field Explanation
Type This part is 8 bits long and shows the type of ICMP packet.

Code This part is also 8 bits long and shows the sub-type or code number used for the
packet.

Checksum This part is 16 bits long and is used to detect any errors in the ICMP packet.
The ICMP information part is variable depending upon the value of the type field. For example,

the ping command uses ICMP ECHO REQUEST type packet. This packet header is shown in
Figure C-3.

204

Figure C-3. ICMP packet used in ping command.

Type

Code Checksum

ldentifier Sequence Number

For a complete list of ICMP packet types, refer to RFC 792.

TCP Packet Header

TCP packet header is discussed in detail in RFC 793 which is available at ftp:/ftp.isi.edu/in-
notes/rfc793.txt for download. Figure C-4 shows structure of TCP header.

Figure C-4. TCP header

Source Port | Destination Port

sequence Number

Acknowledgement Number

Offset

Reserved] Flags Window

Checksum LIrgent Pointer

Opiions and Padding

Different parts of TCP header are explained in Table C-3. Again for a detailed explanation of

TCP, refer to the RFC

Field
Source Port
Destination Port
Sequence Number

Acknowledgement
Number

Offset

Reserved
Flags or Control bits

793.

Table C-3. TCP Packet Header Fields

Explanation
This part is 16 bits long and shows source port number.
This is a 16-bit long field and shows the destination port number.

This is the sequence number for the TCP packet. It is 32 bits long. It
shows the sequence number of the first data octet in the packet. However
if SYN bit is set, this number shows the initial sequence number.

This number is used for acknowledging packets. It is 32 bits long. This
number shows the sequence number of the octet that the sender is
expecting.

This is a 4- bit field and shows the length of the TCP header. Length is
measured in 32-bit numbers.

Six bits are reserved.

The flags are six bits in length and are used for control purposes. These
bits are URG, ACK, PSH, RST, SYN and FIN. A value of 1 in any bit
place indicates the flag is set.

205

Table C-3. TCP Packet Header Fields

Field Explanation
Window This is 16 bits long and is used to tell the other side about the length of
TCP window size.
Checksum This is a checksum for TCP header and data. It is 16 bits long.
Urgent Pointer This field is used only when the URG flag is set. It is 16 bits long.
Options This part is of variable length.

UDP Packet Header

The UDP packet header is simple and is described in RFC 768. It has four fields as shown in
Figure C-5. Each field is 16 bits long. Names of all fields are self-explanatory.

Figure C-5. UDP packet header

Source Port Destination Port
Length Checksum

ARP Packet Header

ARP packets are used to discover the hardware or MAC addresses when the IP address is known.
In any LAN, you will see a lot of ARP packets being transmitted. This is because each host has
to find out the MAC address of the destination host before sending data. The ARP is a broadcast
protocol and its packet header is shown in Figure C-6.

Figure C-6. ARP header

HW Address Type Protocol Address Type
HW Addr Len Proto Addr Len Operation
Source Hardware Address
Source Hardware Address (Continued) Source Protocol Address
Source Protocol Address (Continued) Target Hardware Address

Target Hardware Address (Continued)

Target Protocol Address

Different fields in the ARP packet header are described in Table C-4.

Table C-4. ARP Packet Header Fields

206

Field Explanation

HW Address The HW Address type is a 16 bit long field and it shows the type of hardware.
Type Since most of LANSs are Ethernet-based, its value is 1. For IEEE 802 networks,
its value is 6. For IPSec tunnel, the value is 31.

Protocol The protocol address type shows the protocol used in the network layer. The
Address Type value of this field is 0x800 for IP.

HW Addr Len This field shows the length of the hardware address in number of bytes. This
field is 8 bits long.

Proto Addr This field shows the length of the protocol address. This field is also 8 bits long.
Length

Operation or This field is 16 bits long and is used for the type of ARP packet. A value of 1
Opcode indicates a request packet and a value of 2 indicates a reply packet.

Source This is a 48 bit long field in the case of Ethernet. However its length is variable.
hardware
address

Source This is a 32 bit field in the case of IPv4 packets. However its length is variable.
protocol
address

Target This is 48 bits long in Ethernet and its length is variable.
hardware
address

Target This is 32 bits in the case of IPv4 and its length is variable.
protocol
address

Appendix D. Glossary

This appendix defines some of the most commonly used terms in this book.

Glossary

Alert

A message generated when any intruder activity is detected. Alerts may be sent in many
different forms, e.g., pop-up window, logging to screen, e-mail and so on.

DMZ

207

Demilitarized zone.

HIDS
Host Intrusion Detection System. A system that detects intruder activity for a host.

IDS
Intrusion Detection System. A system that detects any intruder activity. Snort is an
example of an IDS.

IDS Signature
A pattern that we want to look for in a data packet. Based upon a particular signature we
can define appropriate action to take.

NIDS
Network Intrusion Detection System. This is an intrusion detection system that works for
a network. Usually a device (computer or a dedicated device) is placed at an appropriate
location in the network to detect any intruder activity.

Rule Header

The first part of each Snort rule. It contains information about action, protocol, source
and destination addresses, port numbers and direction.

Snort Configuration File

The snort._conf file, which is the main configuration file for Snort. It is read at the
time when Snort starts.

Snort Rule

208

TOS

A way of conveying intruder signatures to Snort.

Type of Service field used in IPv4 packet header.

Trust Levels

Different levels of trust may be imposed in different trust zones. For example, a financial

database may be at a different trust level than a company public web server.

See also [Trust Zone]

Trust Zone

TTL

An area of your network where you apply the same security policy. For example, all
publicly accessible hosts (WWW and e-mail servers) may be placed in a demilitarized
zone (DM2Z).

Time to Live field used in IP packet header.

Appendix E. SNML DTD

This is the DTD file used for Snort XML based messages.

<?xml

<1-—

*
*
*
*
*
*
*
*
*
*
*

version="1.0" encoding="UTF-8"?>

Simple Network Markup Language (SNML)
Version 0.2

snml .dtd
Copyright (C) 2001, 2002 Carnegie Mellon University

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

209

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

oX R X ok X ok X %

<I-- This DTD defines a simple XML exchange format for Network
Intrusion Detection Systems.

The snml can stand for "Snort Markup Language'™ when used with
the snort IDS or as the "'Simple Network Markup Language' when
used in multi-vendor IDS environments.

Comments or questions can be directed to:

Roman Danyliw <rdd@cert.org>
-—>

<IDOCTYPE snml-message-version-0.2 [<IELEMENT report (event*)>

<IELEMENT event (sensor, signature, reference?, timestamp, packet)>

<

The sensor element contains information that can be used to
uniquely identify the source which detected the event.
It always contains a hostname. Optionally, a
sensor Tilter, a data source filename, or an ip address
and network interface may be given.
-——>
<IELEMENT sensor ((file](ipaddr, interface?)), hostname, filter?)>

<l--
| sensor attributes
| format = encoding format of the packet payload (data)
| detail = defines which protocol fields will be present
| fast - limited information

| full - the full packet will be present

-——>
<IATTLIST sensor

format (base64]ascii]hex) #REQUIRED

detail (fast|full) #REQUIRED
>

<I-- This field contains an ordinary hostname -->
<IELEMENT hostname (#PCDATA)>

<I-- This contains a file name with a full path -->
<IELEMENT file (#PCDATA)>

<I--
| Contains a string representing a network interface
| e.g., eth0, ppp0, hmeO, etc.

210

——>
<IELEMENT interface (#PCDATA)>
<I--
| A string representing a tcpdump filter that is normally passed
| in on the command line. e.g. "not net 10.1.1.0/24"
——>
<IELEMENT filter (#PCDATA)>

<I--
| The signature is free-form text describing the event. In snort,
| it is the string contained in the "msg" rule option
-—>

<IELEMENT signature (#PCDATA)>

<l_-
| signature attributes
| 1id = unique identifier of this signature (0..27"32-1)
| revision = revision number of this signature
| class = classification identifier of this signature (numeric)
| priority = numeric priority of this event - (0..255)
-—>
<IATTLIST signature
id CDATA #IMPLIED
revision CDATA #IMPLIED
class CDATA #IMPLIED
priority CDATA #IMPLIED
>
<I--

| A reference provides a mechanism to refer to an external
| database for information related to this signature or event.
-—>

<IELEMENT reference (#PCDATA)>

< —_
reference attribute
system = the external database referenced
- cve Common Vulnerabilities and Exposures
(http://cve._mitre.org)

(http://www.securityfocus.com/bid)
- arachnids : arachNIDS

-
|

|

|

|

| - bugtraq - Bugtraq
|

| (http://www_whitehats.com/ids)
|

|

|

- mcafee : McAfee
(http://vil_nai.com)
- url > custom URL

—_—>
<IATTLIST reference

system CDATA #REQUIRED
>

<l--
| The timestamp must conform to 1S0-8601 standard.
| e.g., 1S0-8601: 1999-08-04 00:01:23-05
-——>

<IELEMENT timestamp (#PCDATA)>

211

<l--
| A packet can be logged without being decoded using "raw"
| mode. This encoding should only be used when a packet is
| received containing protocols which cannot be decoded.

-——>
<IELEMENT packet (raw]iphdr)>

<

| IP address (in dot-quad notation).
| e.g-., 10.1.2.3
| Note: Domain names are not valid.
I
I
| (should be 4 or 6).

-——>
<IELEMENT ipaddr (#PCDATA)>
<IATTLIST ipaddr

version CDATA #REQUIRED
>

<I-- raw contains a base64 representation of a packet -->

<IELEMENT raw (#PCDATA)>

<

I1Pv4 header

The version attribute is the version of IP address

I

| saddr = source IP address - IP address IP (192.168.1.2)
| daddr = destination IP address - IP address [P (192.168.1.2)
| ver = version of ip - 1 byte INT (0O - 15)

| hlen = header length in 32 bit words

| - 1 byte INT (0O - 15)

| tos = type of service - 1 byte INT (0 - 255)

| len = total length of the packet

| - 2 byte INT (0 - 65535)

| id = identification - 2 byte INT (0 - 65535)

| flags = fragment flags - 1 byte INT (O - 7)

| off = fragment offset - 2 byte INT (0 - 65535)

| ttl = time to live - 1 byte INT (0 - 255)

| proto = protocol - 1 byte INT (0O - 255)

| csum = checksum - 2 byte INT (0 - 65535)

-—>

<IELEMENT iphdr ((tcphdr|udphdr]icmphdr), option*)>

<IATTLIST iphdr

saddr CDATA #REQUIRED
daddr CDATA #REQUIRED
ver CDATA #REQUIRED
hlen CDATA #IMPLIED
tos CDATA #IMPLIED
len CDATA #IMPLIED
id CDATA #IMPLIED
flags CDATA #IMPLIED
ttl CDATA #IMPLIED
off CDATA #IMPLIED
ttl CDATA #IMPLIED
proto CDATA #REQUIRED
csum CDATA #IMPLIED

212

<l--
| 1P or TCP option
| option = option code - 1 byte INT (0O - 255)
| len = length of option data - 1 byte INT (0 - 255)
-—=>

<IELEMENT option (#PCDATA)>

<IATTLIST option

code CDATA #REQUIRED
len CDATA #IMPLIED
>
<l--
| TCP header information
| sport = source port - 2 byte INT (0 - 65535)
| dport = destination port - 2 byte INT (0 - 65535)
| seq = sequence number - 4 byte INT (0 - 4294967295)
| ack = acknowledgment number - 4 byte INT (0 - 4294967295)
| off = data offset - 1 byte INT (0O - 15)
| res = reserved field - 1 byte INT (O - 63)
| flags = represents TCP flags - 1 byte INT (0 - 255)
| win = window - 2 byte INT (0 - 65535)
| csum = checksum - 2 byte INT (0 - 65535)
urp = urgent pointer - 2 byte INT (0 - 65535)
-——>
<IELEMENT tcphdr (data, option*)>
<IATTLIST tcphdr
sport CDATA #REQUIRED
dport CDATA #REQUIRED
seq CDATA #IMPLIED
ack CDATA #IMPLIED
off CDATA #IMPLIED
res CDATA #IMPLIED
flags CDATA #REQUIRED
win CDATA #IMPLIED
csum CDATA #IMPLIED
urp CDATA #IMPLIED
>
<I--
| UDP header information
| sport = source port - 2 byte INT (0 - 65535)
| dport = destination port - 2 byte INT (0 - 65535)
| len = length field of UDP header
| - 2 byte INT (0 - 65535)
| csum = checksum - 2 byte INT (0 - 65535)
-—>
<IELEMENT udphdr (data)>
<IATTLIST udphdr
sport CDATA #REQUIRED
dport CDATA #REQUIRED
len CDATA #IMPLIED
csum CDATA #IMPLIED
>
<I--
| ICMP header
| type = icmp type - 1 byte INT (0 - 255)

213

| code = icmp code
| csum = checksum
| id = identifier
seq = sequence number

-——>
<IELEMENT icmphdr (data)>
<IATTLIST icmphdr

type CDATA #REQUIRED

code CDATA #REQUIRED

csum CDATA #IMPLIED

id CDATA #IMPLIED

seq CDATA #IMPLIED
>

<I-- Packet payload -->
<IELEMENT data (#PCDATA)>

1>

1 byte
2 byte
2 byte
2 byte

INT (O
INT (O
INT (O
INT (O

255)

65535)
65535)
65535)

214

