
BIND 9
ADMINISTRATOR REFERENCE MANUAL

Version 9.1.3

for
Internet Software Consortium

Redwood City, CA 94063

BIND 9
Administrator Reference Manual

by the
Nominum BIND Development Team

Nominum, Inc.

July 2001

UNIX® is a registered trademark of the Open Group.
AIX® is a registered trademark of IBM Corporation.
HP-UX® is a registered trademark of Hewlett-Packard Company.
Compaq® and Digital® are registered trademarks of the Compaq Computer Corporation.
Tru64™ UNIX® is a trademark of Compaq Computer Corporation.
IRIX® is a registered trademark of Silicon Graphics, Inc.
Red Hat® is a registered trademark of Red Hat, Inc.
Sun™ and Solaris™ are trademarks or registered trademarks of Sun Microsystems, Inc.
 in the United States and other countries.

Trademark Information

Availability

The BIND 9 Administrator Reference Manual is based on BIND version 9.1.3. This
manual was written and formatted by employees of Nominum, Inc., and is distributed by
Nominum on behalf of the Internet Software Consortium (ISC).
The information in this document is also included with the BIND 9 source distribution kit in
the doc/arm directory in DocBook XML and HTML formats. Instructions for obtaining the
latest release of the BIND 9 distribution kit can be found on the ISC web site at
http://www.isc.org/.

BIND 9 development has been generously underwritten by the following
organizations:

Sun Microsystems, Inc.
Hewlett Packard
Compaq Computer Corporation
IBM
Process Software Corporation
Silicon Graphics, Inc.
Network Associates, Inc.
U.S. Defense Information Systems Agency
USENIX Association
Stichting NLnet - NLnet Foundation

Acknowledgments

Copyright © 2001 Nominum, Inc. and Internet Software Consortium

Internet Software Consortium
950 Charter Street
Redwood City, CA 94063

http://www.isc.org/

Nominum, Inc,
2385 Bay Road
Redwood City, CA 94063

http://www.nominum.com/

BINDv9 Administrator Reference Manual

July 23, 2001 1

Section 1 : Introduction 1
1.1 Scope of Document .1
1.2 Organization of This Document .1
1.3 Conventions Used in This Document .1
1.4 Discussion of Domain Name System (DNS) Basics and BIND2

1.4.1 Nameservers .2
1.4.2 Types of Zones .3
1.4.3 Servers .4

1.4.3.1 Master Server .4
1.4.3.2 Slave Server .4
1.4.3.3 Caching Only Server .4
1.4.3.4 Forwarding Server .4
1.4.3.5 Stealth Server .5

Section 2 : BIND Resource Requirements 7
2.1 Hardware requirements .7
2.2 CPU Requirements .7
2.3 Memory Requirements .7
2.4 Nameserver Intensive Environment Issues .7
2.5 Supported Operating Systems .7

Section 3 : Nameserver Configuration 9
3.1 Sample Configurations .9

3.1.1 A Caching-only Nameserver .9
3.1.2 An Authoritative-only Nameserver .9

3.2 Load Balancing .10
3.3 Notify .10
3.4 Nameserver Operations .11

3.4.1 Tools for Use With the Nameserver Daemon .11
3.4.1.1 Diagnostic Tools .11
3.4.1.2 Administrative Tools .12

3.4.2 Signals .14

Section 4 : Advanced Concepts 17
4.1 Dynamic Update .17
4.2 Incremental Zone Transfers (IXFR) .17
4.3 Split DNS .18
4.4 TSIG .21

4.4.1 Generate Shared Keys for Each Pair of Hosts .21
4.4.1.1 Automatic Generation .21
4.4.1.2 Manual Generation .21

4.4.2 Copying the Shared Secret to Both Machines .22
4.4.3 Informing the Servers of the Key's Existence .22
4.4.4 Instructing the Server to Use the Key .22
4.4.5 TSIG Key Based Access Control .23
4.4.6 Errors .23

BINDv9 Administrator Reference Manual

2 July 23, 2001

4.5 TKEY .23
4.6 SIG(0) .24
4.7 DNSSEC .24

4.7.1 Generating Keys .24
4.7.2 Creating a Keyset .25
4.7.3 Signing the Child’s Keyset .25
4.7.4 Signing the Zone .25
4.7.5 Configuring Servers .26

4.8 IPv6 Support in BIND 9 .26
4.8.1 Address Lookups Using AAAA Records .26
4.8.2 Address Lookups Using A6 Records .27

4.8.2.1 A6 Chains .27
4.8.2.2 A6 Records for DNS Servers .27

4.8.3 Address to Name Lookups Using Nibble Format .28
4.8.4 Address to Name Lookups Using Bitstring Format .28
4.8.5 Using DNAME for Delegation of IPv6 Reverse Addresses28

Section 5 : The BIND 9 Lightweight Resolver 31
5.1 The Lightweight Resolver Library .31
5.2 Running a Resolver Daemon .31

Section 6 : BIND 9 Configuration Reference 33
6.1 Configuration File Elements .33

6.1.1 Address Match Lists .34
6.1.1.1 Syntax .34
6.1.1.2 Definition and Usage .34

6.1.2 Comment Syntax .35
6.1.2.1 Syntax .36
6.1.2.2 Definition and Usage .36

6.2 Configuration File Grammar .36
6.2.1 acl Statement Grammar .37
6.2.2 acl Statement Definition and Usage .37
6.2.3 controls Statement Grammar .38
6.2.4 controls Statement Definition and Usage .38
6.2.5 include Statement Grammar .38
6.2.6 include Statement Definition and Usage .38
6.2.7 key Statement Grammar .39
6.2.8 key Statement Definition and Usage .39
6.2.9 logging Statement Grammar .39
6.2.10 logging Statement Definition and Usage .39

6.2.10.1 The channel Phrase .40
6.2.10.2 The category Phrase .43

6.2.11 lwres Statement Grammar .44
6.2.12 lwres Statement Definition and Usage .44
6.2.13 options Statement Grammar .45
6.2.14 options Statement Definition and Usage .46

BINDv9 Administrator Reference Manual

July 23, 2001 3

6.2.14.1 Boolean Options .48
6.2.14.2 Forwarding .53
6.2.14.3 Access Control .53
6.2.14.4 Interfaces .54
6.2.14.5 Query Address .55
6.2.14.6 Zone Transfers .55
6.2.14.7 Resource Limits .58
6.2.14.8 Periodic Task Intervals .59
6.2.14.9 Topology .60
6.2.14.10 The sortlist Statement .60
6.2.14.11 RRset Ordering .62
6.2.14.12 Tuning .63
6.2.14.13 The Statistics File .63

6.2.15 server Statement Grammar .64
6.2.16 server Statement Definition and Usage .64
6.2.17 trusted-keys Statement Grammar .65
6.2.18 trusted-keys Statement Definition and Usage .66
6.2.19 view Statement Grammar .66
6.2.20 view Statement Definition and Usage .66
6.2.21 zone Statement Grammar .67
6.2.22 zone Statement Definition and Usage .69

6.2.22.1 Zone Types .69
6.2.22.2 Class .70
6.2.22.3 Zone Options .71
6.2.22.4 Dynamic Update Policies .73

6.3 Zone File .74
6.3.1 Types of Resource Records and When to Use Them .74

6.3.1.1 Resource Records .75
6.3.1.2 Textual expression of RRs .77

6.3.2 Discussion of MX Records .78
6.3.3 Setting TTLs .79
6.3.4 Inverse Mapping in IPv4 .79
6.3.5 Other Zone File Directives .80

6.3.5.1 The $ORIGIN Directive .80
6.3.5.2 The $INCLUDE Directive .80
6.3.5.3 The $TTL Directive .80

6.3.6 BIND Master File Extension: the $GENERATE Directive .80

Section 7 : BIND 9 Security Considerations 83
7.1 Access Control Lists .83
7.2 chroot and setuid (for UNIX servers) .83

7.2.1 The chroot Environment .84
7.2.2 Using the setuid Function .84

7.3 Dynamic Update Security .84

Section 8 : Troubleshooting 85

BINDv9 Administrator Reference Manual

4 July 23, 2001

8.1 Common Problems .85
8.1.1 It's not working; how can I figure out what’s wrong? .85

8.2 Incrementing and Changing the Serial Number .85
8.3 Where Can I Get Help? .85

Appendix A: Acknowledgements 89
A.1 A Brief History of the DNS and BIND .89

Appendix B: Historical DNS Information 91
B.1 Classes of Resource Records .91

B.1.1 HS = hesiod .91
B.1.2 CH = chaos .91

Appendix C: General DNS Reference Information 93
C.1 IPv6 addresses (A6) .93

Appendix D: Bibliography (and Suggested Reading) 95
D.1 Request for Comments (RFCs) .95

D.1.1 Standards .95
D.1.2 Proposed Standards .95
D.1.3 Proposed Standards Still Under Development .95
D.1.4 Other Important RFCs About DNS Implementation .95
D.1.5 Resource Record Types .96
D.1.6 DNS and the Internet .96
D.1.7 DNS Operations .96
D.1.8 Other DNS-related RFCs .96
D.1.9 Obsolete and Unimplemented Experimental RRs .97

D.2 Internet Drafts .97
D.3 Other Documents About BIND .97

BINDv9 Administrator Reference Manual Introduction

July 23, 2001 1

Section 1. Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in
the Internet in a hierarchical manner, the rules used for delegating authority over names, and the
system implementation that actually maps names to Internet addresses. DNS data is maintained in
a group of distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements an Internet nameserver for a
number of operating systems. This document provides basic information about the
installation and care of the Internet Software Consortium (ISC) BIND version 9 software
package for system administrators.

1.2 Organization of This Document

In this document, Section 1 introduces the basic DNS and BIND concepts. Section 2
describes resource requirements for running BIND in various environments. Information in
Section 3 is task-oriented in its presentation and is organized functionally, to aid in the
process of installing the BIND 9 software. The task-oriented section is followed by Section
4, which contains more advanced concepts that the system administrator may need for
implementing certain options. Section 5 describes the BIND 9 lightweight resolver. The
contents of Section 6 are organized as in a reference manual to aid in the ongoing
maintenance of the software. Section 7 addresses security considerations, and Section 8
contains troubleshooting help. The main body of the document is followed by several
Appendices which contain useful reference information, such as a Bibliography and historic
information related to BIND and the Domain Name System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:

a pathname, filename, URL, hostname,
mailing list name, or new term or concept

Italic

literal user input Fixed Width Bold

variable user input Fixed Width Italic

program output Fixed Width Bold

To describe: We use the style:

keywords Sans Serif Bold

variables Sans Serif Italic

“meta-syntactic” information (within brackets
when optional)

Fixed Width Italic

Introduction BINDv9 Administrator Reference Manual

2 July 23, 2001

1.4 Discussion of Domain Name System (DNS) Basics and BIND

The purpose of this document is to explain the installation and basic upkeep of the BIND
software package, and we begin by reviewing the fundamentals of the domain naming
system as they relate to BIND. BIND consists of a nameserver (or “daemon”) called named

and a resolver library. The BIND server runs in the background, servicing queries on a
well known network port. The standard port for the User Datagram Protocol (UDP) and
Transmission Control Protocol (TCP), usually port 53, is specified in /etc/services. The
resolver is a set of routines residing in a system library that provides the interface that
programs can use to access the domain name services.

1.4.1 Nameservers

A nameserver (NS) is a program that stores information about named resources and
responds to queries from programs called resolvers which act as client processes.
The basic function of an NS is to provide information about network objects by
answering queries.

With the nameserver, the network can be broken into a hierarchy of domains. The
name space is organized as a tree according to organizational or administrative
boundaries. Each node of the tree, called a domain, is given a label. The name of the
domain is the concatenation of all the labels of the domains from the root to the
current domain. This is represented in written form as a string of labels listed from
right to left and separated by dots. A label need only be unique within its domain.
The whole name space is partitioned into areas called zones, each starting at a
domain and extending down to the leaf domains or to domains where other zones
start. Zones usually represent administrative boundaries. For example, a domain
name for a host at the company Example, Inc. would be:

ourhost.example.com

where com is the top level domain to which ourhost.example.com belongs, example
is a subdomain of com, and ourhost is the name of the host.

The specifications for the domain nameserver are defined in the RFC 1034, RFC
1035 and RFC 974. These documents can be found in
/usr/src/etc/named/doc in 4.4BSD or are available via File Transfer Protocol (FTP)
from
ftp://www.isi.edu/in-notes/ or via the Web at http://www.ietf.org/rfc/. (See Appendix
C for complete information on finding and retrieving RFCs.) It is also recommended
that you read the related man pages: named and resolver.

Command line input Fixed Width Bold

Program output Fixed Width

Optional input Text is enclosed in square brackets

BINDv9 Administrator Reference Manual Introduction

July 23, 2001 3

1.4.2 Types of Zones

As we stated previously, a zone is a point of delegation in the DNS tree. A zone
consists of those contiguous parts of the domain tree for which a domain server has
complete information and over which it has authority. It contains all domain names
from a certain point downward in the domain tree except those which are delegated
to other zones. A delegation point has one or more NS records in the parent zone,
which should be matched by equivalent NS records at the root of the delegated zone.

To properly operate a nameserver, it is important to understand the difference
between a zone and a domain.

For instance, consider the example.com domain which includes names such as
host.aaa.example.com and host.bbb.example.com even though the example.com
zone includes only delegations for the aaa.example.com and bbb.example.com
zones. A zone can map exactly to a single domain, but could also include only part
of a domain, the rest of which could be delegated to other nameservers. Every name
in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every
subdomain is a domain and every domain except the root is also a subdomain. The
terminology is not intuitive and we suggest that you read RFCs 1033, 1034 and
1035 to gain a complete understanding of this difficult and subtle topic.

Though BIND is a Domain Nameserver, it deals primarily in terms of zones. The
master and slave declarations in the named.conf file specify zones, not domains.
When you ask some other site if it is willing to be a slave server for your domain,
you are actually asking for slave service for some collection of zones.

Each zone will have one primary master (also called primary) server which loads
the zone contents from some local file edited by humans or perhaps generated
mechanically from some other local file which is edited by humans. There there will
be some number of slave (also called secondary) servers, which load the zone
contents using the DNS protocol (that is, the secondary servers will contact the
primary and fetch the zone data using TCP). This set of servers—the primary and all
of its secondaries—should be listed in the NS records in the parent zone and will
constitute a delegation. This set of servers must also be listed in the zone file itself,
usually under the @ name which indicates the top level or root of the current zone.
You can list servers in the zone’s top-level @ NS records that are not in the parent’s
NS delegation, but you cannot list servers in the parent’s delegation that are not
present in the zone’s @.

Any servers listed in the NS records must be configured as authoritative for the
zone. A server is authoritative for a zone when it has been configured to answer
questions for that zone with authority, which it does by setting the “authoritative
answer” (AA) bit in reply packets. A server may be authoritative for more than one
zone. The authoritative data for a zone is composed of all of the Resource Records
(RRs)—the data associated with names in a tree-structured name space—attached to
all of the nodes from the top node of the zone down to leaf nodes or nodes above
cuts around the bottom edge of the zone.

Introduction BINDv9 Administrator Reference Manual

4 July 23, 2001

Adding a zone as a type master or type slave will tell the server to answer questions
for the zone authoritatively. If the server is able to load the zone into memory
without any errors it will set the AA bit when it replies to queries for the zone. See
RFCs 1034 and 1035 for more information about the AA bit.

1.4.3 Servers

A DNS server can be master for some zones and slave for others or can be only a
master, or only a slave, or can serve no zones and just answer queries via its cache.
Master servers are often also called primaries and slave servers are often also called
secondaries. Both master/primary and slave/secondary servers are authoritative for
a zone.

All servers keep data in their cache until the data expires, based on a Time To Live
(TTL) field which is maintained for all resource records.

1.4.3.1 Master Server

The primary master server is the ultimate source of information about a
domain. The primary master is an authoritative server configured to be
the source of zone transfer for one or more secondary servers. The
primary master server obtains data for the zone from a file on disk.

1.4.3.2 Slave Server

A slave server, also called a secondary server, is an authoritative server
that uses zone transfers from the primary master server to retrieve the
zone data. Optionally, the slave server obtains zone data from a cache on
disk. Slave servers provide necessary redundancy. All secondary/slave
servers are named in the NS RRs for the zone.

1.4.3.3 Caching Only Server

Some servers are caching only servers. This means that the server caches
the information that it receives and uses it until the data expires. A
caching only server is a server that is not authoritative for any zone. This
server services queries and asks other servers, who have the authority, for
the information it needs.

1.4.3.4 Forwarding Server

Instead of interacting with the nameservers for the root and other
domains, a forwarding server always forwards queries it cannot satisfy
from its authoritative data or cache to a fixed list of other servers. The
forwarded queries are also known as recursive queries, the same type as a
client would send to a server. There may be one or more servers
forwarded to, and they are queried in turn until the list is exhausted or an
answer is found. A forwarding server is typically used when you do not
wish all the servers at a given site to interact with the rest of the Internet
servers. A typical scenario would involve a number of internal DNS

BINDv9 Administrator Reference Manual Introduction

July 23, 2001 5

servers and an Internet firewall. Servers unable to pass packets through
the firewall would forward to the server that can do it, and that server
would query the Internet DNS servers on the internal server’s behalf. An
added benefit of using the forwarding feature is that the central machine
develops a much more complete cache of information that all the
workstations can take advantage of.

There is no prohibition against declaring a server to be a forwarder even
though it has master and/or slave zones as well; the effect will still be that
anything in the local server’s cache or zones will be answered, and
anything else will be forwarded using the forwarders list.

1.4.3.5 Stealth Server

A stealth server is a server that answers authoritatively for a zone, but is
not listed in that zone’s NS records. Stealth servers can be used as a way
to centralize distribution of a zone, without having to edit the zone on a
remote nameserver. Where the master file for a zone resides on a stealth
server in this way, it is often referred to as a “hidden primary”
configuration. Stealth servers can also be a way to keep a local copy of a
zone for rapid access to the zone’s records, even if all “official”
nameservers for the zone are inaccessible.

Introduction BINDv9 Administrator Reference Manual

6 July 23, 2001

BINDv9 Administrator Reference Manual BIND Resource Requirements

July 23, 2001 7

Section 2. BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations,
servers that have been pensioned off from active duty have performed admirably as DNS
servers.

The DNSSEC and IPv6 features of BIND 9 may prove to be quite CPU intensive however,
so organizations that make heavy use of these features may wish to consider larger systems
for these applications. BIND 9 is now fully multithreaded, allowing full utilization of
multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones
without caching, to enterprise-class machines if you intend to process many dynamic
updates and DNSSEC signed zones, serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk.
Future releases of BIND 9 will provide methods to limit the amount of memory used by the
cache, at the expense of reducing cache hit rates and causing more DNS traffic. It is still
good practice to have enough memory to load all zone and cache data into memory—
unfortunately, the best way to determine this for a given installation is to watch the
nameserver in operation. After a few weeks the server process should reach a relatively
stable size where entries are expiring from the cache as fast as they are being inserted.
Ideally, the resource limits should be set higher than this stable size.

2.4 Nameserver Intensive Environment Issues

For nameserver intensive environments, there are two alternative configurations that may be
used. The first is where clients and any second-level internal nameservers query a main
nameserver, which has enough memory to build a large cache. This approach minimizes the
bandwidth used by external name lookups. The second alternative is to set up second-level
internal nameservers to make queries independently. In this configuration, none of the
individual machines needs to have as much memory or CPU power as in the first alternative,
but this has the disadvantage of making many more external queries, as none of the
nameservers share their cached data.

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on the following operating systems:

IBM AIX 4.3
Compaq Digital/Tru64 UNIX 4.0D
Compaq Digital/Tru64 UNIX 5 (with IPv6 EAK)

BIND Resource Requirements BINDv9 Administrator Reference Manual

8 July 23, 2001

HP HP-UX 11
IRIX64 6.5
Sun Solaris 2.6, 7, 8
NetBSD 1.5 (with unproven-pthreads 0.17)
FreeBSD 3.4-STABLE, 3.5, 4.0, 4.1
Red Hat Linux 6.0, 6.1

BINDv9 Administrator Reference Manual Nameserver Configuration

July 23, 2001 9

Section 3. Nameserver Configuration

In this section we provide some suggested configurations along with guidelines for their use. We
also address the topic of reasonable option setting.

3.1 Sample Configurations

3.1.1 A Caching-only Nameserver

The following sample configuration is appropriate for a caching-only name server
for use by clients internal to a corporation. All queries from outside clients are
refused.
// Two corporate subnets we wish to allow queries from.

acl "corpnets" { 192.168.4.0/24; 192.168.7.0/24; };

options {

directory "/etc/namedb"; // Working directory

pid-file "named.pid"; // Put pid file in working dir

allow-query { "corpnets"; };

};

// Root server hints

zone "." { type hint; file "root.hint"; };

// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;

file "localhost.rev";

notify no;

};

3.1.2 An Authoritative-only Nameserver

This sample configuration is for an authoritative-only server that is the master server
for “example.com” and a slave for the subdomain “eng.example.com”.
options {

directory "/etc/namedb"; // Working directory

pid-file "named.pid"; // Put pid file in working dir

allow-query { any; }; // This is the default

recursion no; // Do not provide recursive service

};

// Root server hints

zone "." { type hint; file "root.hint"; };

// Provide a reverse mapping for the loopback address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;

file "localhost.rev";

notify no;

};

Nameserver Configuration BINDv9 Administrator Reference Manual

10 July 23, 2001

// We are the master server for example.com

zone "example.com" {

type master;

file "example.com.db";

// IP addresses of slave servers allowed to transfer example.com

allow-transfer {

192.168.4.14;

192.168.5.53;

};

};

// We are a slave server for eng.example.com

zone "eng.example.com" {

type slave;

file "eng.example.com.bk";

// IP address of eng.example.com master server

masters { 192.168.4.12; };

};

3.2 Load Balancing

Primitive load balancing can be achieved in DNS using multiple A records for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2
and 10.0.0.3, a set of records such as the following means that clients will connect to each
machine one third of the time:

When a resolver queries for these records, BIND will rotate them and respond to the query
with the records in a different order. In the example above, clients will randomly receive
records in the order 1, 2, 3; 2, 3, 1; and 3, 1, 2. Most clients will use the first record returned
and discard the rest.

For more detail on ordering responses, check the rrset-order substatement in the options

statement under Section 6.2.14.11, “RRset Ordering”, page 62. This substatement is not
supported in BIND 9, and only the ordering scheme described above is available.

3.3 Notify

DNS Notify is a mechanism that allows master nameservers to notify their slave servers of
changes to a zone’s data. In response to a NOTIFY from a master server, the slave will check
to see that its version of the zone is the current version and, if not, initiate a transfer.

Name TTL CLASS TYPE Resource Record (RR) Data

www 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

BINDv9 Administrator Reference Manual Nameserver Configuration

July 23, 2001 11

DNS Notify is fully documented in RFC 1996. See also the description of the zone option
also-notify under Section 6.2.14.6, “Zone Transfers”, page 55. For more information
about notify, see Section 6.2.14.1, “Boolean Options”, page 48

3.4 Nameserver Operations

3.4.1 Tools for Use With the Nameserver Daemon

There are several indispensable diagnostic, administrative and monitoring tools
available to the system administrator for controlling and debugging the nameserver
daemon. We describe several in this section

3.4.1.1 Diagnostic Tools

dig

The domain information groper (dig) is a command line tool that can be
used to gather information from the Domain Name System servers. Dig
has two modes: simple interactive mode for a single query, and batch
mode which executes a query for each in a list of several query lines. All
query options are accessible from the command line.

Usage
dig [@server] domain [<query-type>] [<query-class>]

[+<query-option>] [-<dig-option>] [%comment]

The usual simple use of dig will take the form
dig @server domain query-type query-class

For more information and a list of available commands and options, see
the dig man page.

host

The host utility provides a simple DNS lookup using a command-line
interface for looking up Internet hostnames. By default, the utility
converts between host names and Internet addresses, but its functionality
can be extended with the use of options.

Usage
host [-aCdlrTwv] [-c class] [-N ndots] [-t type]

[-W timeout] [-R retries] hostname [server]

For more information and a list of available commands and options, see
the host man page.

nslookup

nslookup is a program used to query Internet domain nameservers.
nslookup has two modes: interactive and non-interactive. Interactive

Nameserver Configuration BINDv9 Administrator Reference Manual

12 July 23, 2001

mode allows the user to query nameservers for information about various
hosts and domains or to print a list of hosts in a domain. Non-interactive
mode is used to print just the name and requested information for a host or
domain.

Usage
nslookup [-option ...] [host-to-find | - [server]]

Interactive mode is entered when no arguments are given (the default
nameserver will be used) or when the first argument is a hyphen (‘-’) and
the second argument is the host name or Internet address of a nameserver.

Non-interactive mode is used when the name or Internet address of the
host to be looked up is given as the first argument. The optional second
argument specifies the host name or address of a nameserver.

Due to its arcane user interface and frequently inconsistent behavior, we
do not recommend the use of nslookup. Use dig instead.

named-checkconf

Checks the syntax of named.conf.

Usage
named-checkconf [filename]

named-checkzone

Performs syntax and consistency checks on a individual zone.

Usage
named-checkzone [-dq] [-c class] zone [filename]

3.4.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

rndc

The remote name daemon control (rndc) program allows the system
administrator to control the operation of a nameserver. If you run rndc

without any options it will display a usage message as follows:
Usage: rndc [-c config] [-s server] [-p port] [-y key] com-
mand [command ...]

command is one of the following for named:

reload Reload configuration file and
zones.

BINDv9 Administrator Reference Manual Nameserver Configuration

July 23, 2001 13

In BIND 9.1, rndc does not yet support all the commands of the BIND 8
ndc utility. Additonal commands will be added in future releases.

A configuration file is required, since all communication with the server
is authenticated with digital signatures that rely on a shared secret, and
there is no way to provide that secret other than with a configuration file.
The default location for the rndc configuration file is /etc/rndc.conf, but an
alternate location can be specified with the -c option.

The format of the configuration file is similar to that of named.conf, but
limited to only three statements, the options, key and server statements.
These statements are what associate the secret keys to the servers with
which they are meant to be shared. The order of statements is not
significant.

The options statement has two clauses: default-server and
default-key. default-server takes a host name or address argument
and represents the server that will be contacted if no -s option is provided
on the command line. default-key takes the name of key as its
argument, as defined by a key statement. In the future a default-port

clause will be added to specify the port to which rndc should connect.

reload zone [class [view]] Reload the given zone.

refresh zone [class [view]] Schedule zone maintenance for
the given zone.

stats Write server statistics to the
statistics file.

querylog Toggle query logging.

dumpdb Dump the current contents of
the cache (or caches if there are
multiple views) into the file
named by the dump-file option
(by default, named_dump.db).

stop Stop the server, making sure any
recent changes made through
dynamic update or IXFR are
first saved to the master files of
the updated zones.

halt Stop the server immediately.
Recent changes made through
dynamic update or IXFR are not
saved to the master files, but
will be rolled forward from the
journal files when the server is
restarted.

Nameserver Configuration BINDv9 Administrator Reference Manual

14 July 23, 2001

The key statement names a key with its string argument. The string is
required by the server to be a valid domain name, though it need not
actually be hierarchical; thus, a string like “rndc_key” is a valid name.
The key statement has two clauses: algorithm and secret. While the
configuration parser will accept any string as the argument to algorithm,
currently only the string "hmac-md5" has any meaning. The secret is a
base-64 encoded string, typically generated with either dnssec-keygen or
mmencode.

The server statement uses the key clause to associate a key-defined key
with a server. The argument to the server statement is a host name or
address (addresses must be double quoted). The argument to the key
clause is the name of the key as defined by the key statement. A port

clause will be added to a future release to specify the port to which rndc

should connect on the given server.

A sample minimal configuration file is as follows:
key rndc_key {

algorithm "hmac-md5";

secret
"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";

};

options {

default-server localhost;

default-key rndc_key;

};

This file, if installed as /etc/rndc.conf, would allow the command:
$ rndc reload

to connect to 127.0.0.1 port 953 and cause the nameserver to reload, if a
nameserver on the local machine were running with following controls
statements:

controls {

inet 127.0.0.1 allow { localhost; } keys { rndc_key; };
};

and it had an identical key statement for rndc_key.

3.4.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in
the following table. These signals can be sent using the kill command.

SIGHUP Causes the server to read named.conf and reload the database.

SIGTERM Causes the server to clean up and exit.

BINDv9 Administrator Reference Manual Nameserver Configuration

July 23, 2001 15

SIGINT Causes the server to clean up and exit.

Nameserver Configuration BINDv9 Administrator Reference Manual

16 July 23, 2001

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 17

Section 4. Advanced Concepts

4.1 Dynamic Update

Dynamic update is the term used for the ability under certain specified conditions to add,
modify or delete records or RRsets in the master zone files. Dynamic update is fully
described in RFC 2136.

Dynamic update is enabled on a zone-by-zone basis, by including an allow-update or
update-policy clause in the zone statement.

Updating of secure zones (zones using DNSSEC) is modelled after the simple-secure-update
proposal, a work in progress in the DNS Extensions working group of the IETF. (See
http://www.ietf.org/html.charters/dnsext-charter.html for information about the DNS
Extensions working group.) SIG and NXT records affected by updates are automatically
regenerated by the server using an online zone key. Update authorization is based on
transaction signatures and an explicit server policy.

The zone files of dynamic zones cannot normally be edited by hand. The zone file on disk at
any given time may not contain the latest changes performed by dynamic update. The zone
file is only written to disk only occasionally, and when shutting down the server using rndc

stop. Changes that have occurred since the zone file was last written to disk are stored only
in the zone's journal (.jnl) file.

If you have to make changes to a dynamic zone manually, the following procedure will
work: Shut down the server using rndc stop (sending a signal or using rndc halt is not
sufficient). Wait for the server to exit, then remove the zone’s .jnl file, edit the zone file, and
restart the server. Removing the .jnl file is necessary because the manual edits will not be
present in the journal, rendering it inconsistent with the contents of the zone file.

4.2 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only
changed data, instead of having to transfer the entire zone. The IXFR protocol is
documented in RFC 1995. See the list of proposed standards in Appendix D, Section D.1.2,
“Proposed Standards”, page 95.

When acting as a master, BIND 9 supports IXFR for those zones where the necessary
change history information is available. These include master zones maintained by dynamic
update and slave zones whose data was obtained by IXFR, but not manually maintained
master zones nor slave zones obtained by performing a full zone transfer (AXFR).

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For
more information about disabling IXFR, see the description of the request-ixfr clause of
the server statement.

Advanced Concepts BINDv9 Administrator Reference Manual

18 July 23, 2001

4.3 Split DNS

Setting up different views, or visibility, of DNS space to internal and external resolvers is
usually referred to as a Split DNS setup. There are several reasons an organization would
want to set up its DNS this way.

One common reason for setting up a DNS system this way is to hide “internal” DNS
information from “external” clients on the Internet. There is some debate as to whether or
not this is actually useful. Internal DNS information leaks out in many ways (via email
headers, for example) and most savvy “attackers” can find the information they need using
other means.

Another common reason for setting up a Split DNS system is to allow internal networks that
are behind filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to
resolve DNS on the Internet. Split DNS can also be used to allow mail from outside back in
to the internal network.

Here is an example of a split DNS setup:

Let’s say a company named Example, Inc. (example.com) has several corporate sites that
have an internal network with reserved Internet Protocol (IP) space and an external
demilitarized zone (DMZ), or “outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to
exchange mail with people on the outside. The company also wants its internal resolvers to
have access to certain internal-only zones that are not available at all outside of the internal
network.

In order to accomplish this, the company will set up two sets of nameservers. One set will be
on the inside network (in the reserved IP space) and the other set will be on bastion hosts,
which are “proxy” hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for
site1.internal, site2.internal, site1.example.com, and site2.example.com, to the servers in the
DMZ. These internal servers will have complete sets of information for site1.example.com,
site2.example.com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal nameservers must be
configured to disallow all queries to these domains from any external hosts, including the
bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the “public”
version of the site1 and site2.example.com zones. This could include things such as the host
records for public servers (www.example.com and ftp.example.com), and mail exchange (MX)
records (a.mx.example.com and b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX records that
contain wildcard (‘*’) records pointing to the bastion hosts. This is needed because external
mail servers do not have any other way of looking up how to deliver mail to those internal

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 19

hosts. With the wildcard records, the mail will be delivered to the bastion host, which can
then forward it on to internal hosts.

Here’s an example of a wildcard MX record:
* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts
will need to know how to deliver mail to internal hosts. In order for this to work properly,
the resolvers on the bastion hosts will need to be configured to point to the internal
nameservers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for
external hostnames will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only
the internal nameservers for DNS queries. This could also be enforced via selective filtering
on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Look up any hostnames in the site1.internal and site2.internal domains.

• Look up any hostnames on the Internet.

• Exchange mail with internal AND external people.

Hosts on the Internet will be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Exchange mail with anyone in the site1 and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only
configuration information; for information on how to configure your zone files, see Section
3.1, “Sample Configurations”, page 9.

Internal DNS server config:
acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips-go-here; };
options {

...

...
forward only;
forwarders { bastion-ips-go-here; }; // forward to external servers
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; };// restrict query access
allow-recursion { internals; }; // restrict recursion
...
...

};

zone "site1.example.com" { // sample slave zone
type master;

Advanced Concepts BINDv9 Administrator Reference Manual

20 July 23, 2001

file "m/site1.example.com";
forwarders { }; // do normal iterative

// resolution (do not forward)
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

};

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

};

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };
acl externals { bastion-ips-go-here; };
options {

...

...
allow-transfer { none; }; // sample allow-transfer (no one)
allow-query { internals; externals; };// restrict query access
allow-recursion { internals; externals; };// restrict recursion
...
...

};

zone "site1.example.com" { // sample slave zone
type master;
file "m/site1.foo.com";
allow-query { any; };
allow-transfer { internals; externals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-query { any; };
allow-transfer { internals; externals; }

};

In the resolv.conf (or equivalent) on the bastion host(s):

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 21

search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.4 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security
in BIND. It describes changes to the configuration file as well as what changes are required
for different features, including the process of creating transaction keys and using
transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes zone
transfer, notify, and recursive query messages. Resolvers based on newer versions of
BIND 8 have limited support for TSIG.

TSIG might be most useful for dynamic update. A primary server for a dynamic zone should
use access control to control updates, but IP-based access control is insufficient. Key-based
access control is far superior. See RFC 2845 in Section D.1.2, “Proposed Standards”, page
95 of the Appendix. The nsupdate program supports TSIG via the “-k” and “-y” command
line options.

4.4.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between host1 and host2. An arbitrary key
name is chosen: “host1-host2.”. The key name must be the same on both hosts.

4.4.1.1 Automatic Generation

The following command will generate a 128 bit (16 byte) HMAC-MD5
key as described above. Longer keys are better, but shorter keys are easier
to read. Note that the maximum key length is 512 bits; keys longer than
that will be digested with MD5 to produce a 128 bit key.
dnssec-keygen -a hmac-md5 -b 128 -n HOST host1-host2.

The key is in the file Khost1-host2.+157+00000.private. Nothing directly
uses this file, but the base-64 encoded string following “Key:” can be
extracted from the file and used as a shared secret:
Key: La/E5CjG9O+os1jq0a2jdA==

The string “La/E5CjG9O+os1jq0a2jdA==” can be used as the shared
secret.

4.4.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-
64. Most ASCII strings are valid base-64 strings (assuming the length is a
multiple of 4 and only valid characters are used), so the shared secret can
be manually generated.

Advanced Concepts BINDv9 Administrator Reference Manual

22 July 23, 2001

Also, a known string can be run through mmencode or a similar program to
generate base-64 encoded data.

4.4.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used.
This could be secure FTP, ssh, telephone, etc.

4.4.3 Informing the Servers of the Key's Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s
named.conf file:
key host1-host2. {

algorithm hmac-md5;
secret "La/E5CjG9O+os1jq0a2jdA==";

};

The algorithm, hmac-md5, is the only one supported by BIND. The secret is the one
generated above. Since this is a secret, it is recommended that either named.conf be
non-world readable, or the key directive be added to a non-world readable file that is
included by named.conf.

At this point, the key is recognized. This means that if the server receives a message
signed by this key, it can verify the signature. If the signature succeeds, the response
is signed by the same key.

4.4.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are
to be used. The following is added to the named.conf file for host1, if the IP address
of host2 is 10.1.2.3:
server 10.1.2.3 {

keys { host1-host2. ;};
};

Multiple keys may be present, but only the first is used. This directive does not
contain any secrets, so it may be in a world-readable file.

If host1 sends a message that is a response to that address, the message will be
signed with the specified key. host1 will expect any responses to signed messages to
be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s
address) for host2 to sign non-response messages to host1.

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 23

4.4.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and
allow-{ query | transfer | update } directives. This has been extended to
allow TSIG keys also. The above key would be denoted key host1-host2.

An example of an allow-update directive would be:
allow-update { key host1-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key
named “host1-host2.”.

The more powerful update-policy statement is described Section 6.2.22.4,
“Dynamic Update Policies”, page 73.

4.4.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed
message is sent to a non-TSIG aware server, a FORMERR will be returned, since
the server will not understand the record. This is a result of misconfiguration, since
the server must be explicitly configured to send a TSIG signed message to a specific
server.

If a TSIG aware server receives a message signed by an unknown key, the response
will be unsigned with the TSIG extended error code set to BADKEY. If a TSIG
aware server receives a message with a signature that does not validate, the response
will be unsigned with the TSIG extended error code set to BADSIG. If a TSIG
aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and
the time values will be adjusted so that the response can be successfully verified. In
any of these cases, the message’s rcode is set to NOTAUTH.

4.5 TKEY

TKEY is a mechanism for automatically generating a shared secret between two hosts. There
are several “modes” of TKEY that specify how the key is generated or assigned. BIND
implements only one of these modes, the Diffie-Hellman key exchange. Both hosts are
required to have a Diffie-Hellman KEY record (although this record is not required to be
present in a zone). The TKEY process must use signed messages, signed either by TSIG or
SIG(0). The result of TKEY is a shared secret that can be used to sign messages with TSIG.
TKEY can also be used to delete shared secrets that it had previously generated.

The TKEY process is initiated by a client or server by sending a signed TKEY query (including
any appropriate KEYs) to a TKEY-aware server. The server response, if it indicates success,
will contain a TKEY record and any appropriate keys. After this exchange, both participants
have enough information to determine the shared secret; the exact process depends on the
TKEY mode. When using the Diffie-Hellman TKEY mode, Diffie-Hellman keys are
exchanged, and the shared secret is derived by both participants.

Advanced Concepts BINDv9 Administrator Reference Manual

24 July 23, 2001

4.6 SIG(0)

BIND 9 partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535.
SIG(0) uses public/private keys to authenticate messages. Access control is performed in
the same manner as TSIG keys; privileges can be granted or denied based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and
trusted by the server; the server will not attempt to locate and/or validate the key.

BIND 9 does not ship with any tools that generate SIG(0) signed messages.

4.7 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security
(DNSSEC) extensions, defined in RFC 2535. This section describes the creation and use of
DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed.
BIND 9 ships with several tools that are used in this process, which are explained in more
detail below. In all cases, the “-h” option prints a full list of parameters. Note that the
DNSSEC tools require the keyset and signedkey files to be in the working directory; also
note that the tools shipped with BIND 9.0.x are not fully compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to
transmit keys and signatures. A zone’s security status must be indicated by the parent zone
for a DNSSEC capable resolver to trust its data.

For other servers to trust data in this zone, they must either be statically configured with this
zone’s zone key or the zone key of another zone above this one in the DNS tree.

4.7.1 Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other
records in the zone, as well as the zone keys of any secure delegated zones. Zone keys must
have the same name as the zone, a name type of ZONE, and must be usable for authentication.
It is recommended that zone keys be mandatory to implement a cryptographic algorithm;
currently the only key mandatory to implement an algorithm is DSA.

The following command will generate a 768 bit DSA key for the child.example zone:
dnssec-keygen -a DSA -b 768 -n ZONE child.example.

Two output files will be produced: Kchild.example.+003+12345.key and
Kchild.example.+003+12345.private (where 12345 is an example of a key tag). The key file
names contain the key name (child.example.), algorithm (3 is DSA, 1 is RSA, etc.), and the
key tag (12345 in this case). The private key (in the .private file) is used to generate
signatures, and the public key (in the .key file) is used for signature verification.

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 25

To generate another key with the same properties (but with a different key tag), repeat the
above command.

The public keys should be inserted into the zone file with $INCLUDE statements, including
the .key files.

4.7.2 Creating a Keyset

The dnssec-makekeyset program is used to create a key set from one or more keys.

Once the zone keys have been generated, a key set must be built for transmission to the
administrator of the parent zone, so that the parent zone can sign the keys with its own zone
key and correctly indicate the security status of this zone. When building a key set, the list
of keys to be included and the TTL of the set must be specified, and the desired signature
validity period of the parent’s signature may also be specified.

The list of keys to be inserted into the key set may also include non-zone keys present at the
top of the zone. dnssec-makekeyset may also be used at other names in the zone.

The following command generates a key set containing the above key and another key
similarly generated, with a TTL of 3600 and a signature validity period of 10 days starting
from now.

dnssec-makekeyset -t 3600 -e +86400 Kchild.example.+003+12345
Kchild.example.+003+23456

One output file is produced: child.example.keyset. This file should be transmitted to the
parent to be signed. It includes the keys, as well as signatures over the key set generated by
the zone keys themselves, which are used to prove ownership of the private keys and encode
the desired validity period.

4.7.3 Signing the Child’s Keyset

The dnssec-signkey program is used to sign one child’s keyset.

If the child.example zone has any delegations which are secure, for example,
grand.child.example, the child.example administrator should receive keyset files for each
secure subzone. These keys must be signed by this zone’s zone keys.

The following command signs the child’s key set with the zone keys:
dnssec-signkey grand.child.example.keyset Kchild.example.+003+12345
Kchild.example.+003+23456

One output file is produced: signedkey-grand.child.example.. This file should be both
transmitted back to the child and retained. It includes all keys (the child’s keys) from the
keyset file and signatures generated by this zone’s zone keys.

4.7.4 Signing the Zone

The dnssec-signzone program is used to sign a zone.

Advanced Concepts BINDv9 Administrator Reference Manual

26 July 23, 2001

Any signedkey files corresponding to secure subzones should be present, as well as a
signedkey file for this zone generated by the parent (if there is one). The zone signer will
generate NXT and SIG records for the zone, as well as incorporate the zone key signature
from the parent and indicate the security status at all delegation points.

The following command signs the zone, assuming it is in a file called zone.child.example. By
default, all zone keys which have an available private key are used to generate signatures.
dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced by
named.conf as the input file for the zone.

4.7.5 Configuring Servers

Unlike in BIND 8, data is not verified on load in BIND 9, so zone keys for authoritative
zones do not need to be specified in the configuration file.

The public key for any security root must be present in the configuration file’s
trusted-keys statement, as described later in this document.

4.8 IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to
name lookups. It will also use IPv6 addresses to make queries when running on an IPv6
capable system.

For forward lookups, BIND 9 supports both A6 and AAAA records. The of AAAA records
is deprecated, but it is still useful for hosts to have both AAAA and A6 records to maintain
backward compatibility with installations where AAAA records are still used. In fact, the
stub resolvers currently shipped with most operating system support only AAAA lookups,
because following A6 chains is much harder than doing A or AAAA lookups.

For IPv6 reverse lookups, BIND 9 supports the new “bitstring” format used in the ip6.arpa
domain, as well as the older, deprecated “nibble” format used in the ip6.int domain.

BIND 9 includes a new lightweight resolver library and resolver daemon which new
applications may choose to use to avoid the complexities of A6 chain following and bitstring
labels. See Section 5, “The BIND 9 Lightweight Resolver”, page 31 for more information.

For an overview of the format and structure of IPv6 addresses, see Section C.1 on page 93 of
the Appendix.

4.8.1 Address Lookups Using AAAA Records

The AAAA record is a parallel to the IPv4 A record. It specifies the entire address
in a single record. For example,
$ORIGIN example.com.
host 3600 IN AAAA 3ffe:8050:201:1860:42::1

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 27

While their use is deprecated, they are useful to support older IPv6 applications.
They should not be added where they are not absolutely necessary.

4.8.2 Address Lookups Using A6 Records

The A6 record is more flexible than the AAAA record, and is therefore more
complicated. The A6 record can be used to form a chain of A6 records, each
specifying part of the IPv6 address. It can also be used to specify the entire record
as well. For example, this record supplies the same data as the AAAA record in the
previous example:
$ORIGIN example.com.
host 3600 IN A6 0 3ffe:8050:201:1860:42::1

4.8.2.1 A6 Chains

A6 records are designed to allow network renumbering. This works when
an A6 record only specifies the part of the address space the domain
owner controls. For example, a host may be at a company named
“company.” It has two ISPs which provide IPv6 address space for it.
These two ISPs fully specify the IPv6 prefix they supply.

In the company’s address space:
$ORIGINexample.com.
host 3600 IN A6 64 0:0:0:0:42::1company.example1.net.
host 3600 IN A6 64 0:0:0:0:42::1company.example2.net.

ISP1 will use:
$ORIGIN example1.net.
company 3600 IN A6 0 3ffe:8050:201:1860::

ISP2 will use:
$ORIGIN example2.net.
company 3600 IN A6 0 1234:5678:90ab:fffa::

When host.example.com is looked up, the resolver (in the resolver
daemon or caching name server) will find two partial A6 records, and will
use the additional name to find the remainder of the data.

4.8.2.2 A6 Records for DNS Servers

When an A6 record specifies the address of a name server, it should use
the full address rather than specifying a partial address. For example:
$ORIGIN example.com.

@ 14400 IN NS ns0
14400 IN NS ns1

ns0 14400 IN A6 0 3ffe:8050:201:1860:42::1
ns1 14400 IN A 192.168.42.1

Advanced Concepts BINDv9 Administrator Reference Manual

28 July 23, 2001

It is recommended that IPv4-in-IPv6 mapped addresses not be used. If a
host has an IPv4 address, use an A record, not an A6, with
::ffff:192.168.42.1 as the address.

4.8.3 Address to Name Lookups Using Nibble Format

While the use of nibble format to look up names is deprecated, it is supported for
backwards compatiblity with existing IPv6 applications.

When looking up an address in nibble format, the address components are simply
reversed, just as in IPv4, and ip6.int. is appended to the resulting name. For
example, the following would provide reverse name lookup for a host with address
3ffe:8050:201:1860:42::1.

$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.int.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.

4.8.4 Address to Name Lookups Using Bitstring Format

Bitstring labels can start and end on any bit boundary, rather than on a multiple of 4
bits as in the nibble format. They also use ip6.arpa rather than ip6.int.

To replicate the previous example using bitstrings:
$ORIGIN \[x3ffe805002011860/64].ip6.arpa.
\[x0042000000000001/64]14400 IN PTR host.example.com.

4.8.5 Using DNAME for Delegation of IPv6 Reverse Addresses

In IPV6, the same host may have many addresses from many network providers.
Since the trailing portion of the address usually remains constant, DNAME can help
reduce the number of zone files used for reverse mapping that need to be
maintained.

For example, consider a host which has two providers (example.net and
example2.net) and therefore two IPv6 addresses. Since the host chooses its own 64
bit host address portion, the provider address is the only part that changes:
$ORIGIN example.com.
host IN A6 64 ::1234:5678:1212:5675 cust1.example.net.

IN A6 64 ::1234:5678:1212:5675 subnet5.example2.net.

$ORIGIN example.net.
cust1 IN A6 48 0:0:0:dddd:: ipv6net.example.net.
ipv6net IN A6 0 aa:bb:cccc::

$ORIGIN example2.net.
subnet5 IN A6 48 0:0:0:1:: ipv6net2.example2.net.
ipv6net2 IN A6 0 6666:5555:4::

This sets up forward lookups. To handle the reverse lookups, the provider
example.net would have:
$ORIGIN \[x00aa00bbcccc/48].ip6.arpa.
\[xdddd/16] IN DNAME ipv6-rev.example.com.

BINDv9 Administrator Reference Manual Advanced Concepts

July 23, 2001 29

and example2.net would have:
$ORIGIN \[x666655550004/48].ip6.arpa.
\[x0001/16] IN DNAME ipv6-rev.example.com.

example.com needs only one zone file to handle both of these reverse mappings:
$ORIGIN ipv6-rev.example.com.
\[x1234567812125675/64]IN PTR host.example.com.

Advanced Concepts BINDv9 Administrator Reference Manual

30 July 23, 2001

BINDv9 Administrator Reference Manual The BIND 9 Lightweight Resolver

July 23, 2001 31

Section 5. The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

Traditionally applications have been linked with a stub resolver library that sends recursive
DNS queries to a local caching name server.

IPv6 introduces new complexity into the resolution process, such as following A6 chains
and DNAME records, and simultaneous lookup of IPv4 and IPv6 addresses. These are hard
or impossible to implement in a traditional stub resolver.

Instead, BIND 9 provides resolution services to local clients using a combination of a
lightweight resolver library and a resolver daemon process running on the local host. These
communicate using a simple UDP-based protocol, the “lightweight resolver protocol” that is
distinct from and simpler than the full DNS protocol.

5.2 Running a Resolver Daemon

To use the lightweight resolver interface, the system must run the resolver daemon lwresd.

By default, applications using the lightweight resolver library will make UDP requests to the
IPv4 loopback address (127.0.0.1) on port 921. The address can be overridden by lwserver

lines in /etc/resolv.conf. The daemon will try to find the answer to the questions “what are the
addresses for host foo.example.com?” and “what are the names for IPv4 address 10.1.2.3?”

The daemon currently only looks in the DNS, but in the future it may use other sources such
as /etc/hosts, NIS, etc.

The lwresd daemon is essentially a stripped-down, caching-only name server that answers
requests using the lightweight resolver protocol rather than the DNS protocol. Because it
needs to run on each host, it is designed to require no or minimal configuration. Unless
configured otherwise, it uses the name servers listed on nameserver lines in /etc/resolv.conf
as forwarders, but is also capable of doing the resolution autonomously if none are specified.

The lwresd daemon may also be configured with a named.conf style configuration file, in
/etc/lwresd.conf by default. A name server may also be configured to act as a lightweight
resolver daemon using the lwres statement in named.conf.

The BIND 9 Lightweight Resolver BINDv9 Administrator Reference Manual

32 July 23, 2001

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 33

Section 6. BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8.x; however, there are a few new areas of
configuration, such as views. BIND 8.x configuration files should work with few alterations
in BIND 9, although more complex configurations should be reviewed to check if they can
be more efficiently implemented using the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script
contrib/named-bootconf/named-bootconf.sh.

6.1 Configuration File Elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl_name The name of an address_match_list as defined by the acl

statement.

address_match_list A list of one or more ip_addr, ip_prefix, key_id, or
acl_name elements, as described in “Address Match Lists”
on page 34.

domain_name A quoted string which will be used as a DNS name, for
example “my.test.domain”.

dotted_decimal One or more integers valued 0 through 255 separated only
by dots (‘.’), such as 123, 45.67 or 89.123.45.67.

ip4_addr An IPv4 address with exactly four elements in
dotted_decimal notation.

ip6_addr An IPv6 address, such as fe80::200:f8ff:fe01:9742.

ip_addr An ip4_addr or ip6_addr.

ip_port An IP port number. number is limited to 0 through 65535,
with values below 1024 typically restricted to root-owned
processes. In some cases an asterisk (‘*’) character can be
used as a placeholder to select a random high-numbered
port.

ip_prefix An IP network specified as an ip_addr, followed by a slash
(‘/’) and then the number of bits in the netmask. Trailing
zeros in a ip_addr may be omitted. For example, 127/8 is
the network 127.0.0.0 with netmask 255.0.0.0 and
1.2.3.0/28 is network 1.2.3.0 with netmask
255.255.255.240.

key_id A domain_name representing the name of a shared key, to be
used for transaction security.

key_list A list of one or more key_ids, separated by semicolons and
ending with a semicolon.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

34 July 23, 2001

6.1.1 Address Match Lists

6.1.1.1 Syntax

address_match_list = address_match_list_element ;
[address_match_list_element; ...]

address_match_list_element = [!] (ip_address [/length] |
key key_id | acl_name | { address_match_list })

6.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for
various server operations. They are also used to define priorities for
querying other nameservers and to set the addresses on which named will
listen for queries. The elements which constitute an address match list can
be any of the following:

• an IP address (IPv4 or IPv6)

• an IP prefix (in the ‘/’-notation)

• a key ID, as defined by the key statement

number A non-negative integer with an entire range limited by the
range of a C language signed integer (2,147,483,647 on a
machine with 32 bit integers). Its acceptable value might
further be limited by the context in which it is used.

path_name A quoted string which will be used as a pathname, such as
"zones/master/my.test.domain".

size_spec A number, the word unlimited, or the word default.
The maximum value of size_spec is that of unsigned long
integers on the machine. An unlimited size_spec requests
unlimited use, or the maximum available amount. A default

size_spec uses the limit that was in force when the server
was started.
A number can optionally be followed by a scaling factor: K
or k for kilobytes, M or m for megabytes, and G or g for
gigabytes, which scale by 1024, 1024*1024, and
1024*1024*1024 respectively.
Integer storage overflow is currently silently ignored
during conversion of scaled values, resulting in values less
than intended, possibly even negative. Using unlimited is the
best way to safely set a really large number.

yes_or_no Either yes or no. The words true and false are also
accepted, as are the numbers 1 and 0.

dialup_option One of yes, no, notify, notify-passive, refresh, or
passive. When used in a zone, notify-passive, refresh,
and passive are restricted to slave and stub zones.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 35

• the name of an address match list previously defined with the acl

statement

• a nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (‘!’) and the
match list names “any,” “none,” “localhost” and “localnets” are
predefined. More information on those names can be found in the
description of the acl statement.

The addition of the key clause made the name of this syntactic element
something of a misnomer, since security keys can be used to validate
access without regard to a host or network address. Nonetheless, the term
“address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list,
the list is traversed in order until an element matches. The interpretation
of a match depends on whether the list is being used for access control,
defining listen-on ports, or as a topology, and whether the element was
negated.

When used as an access control list, a non-negated match allows access
and a negated match denies access. If there is no match, access is denied.
The clauses allow-notify, allow-query, allow-transfer, allow-
update and blackhole all use address match lists this. Similarly, the
listen-on option will cause the server to not accept queries on any of the
machine's addresses which do not match the list.

When used with the topology clause, a non-negated match returns a
distance based on its position on the list (the closer the match is to the
start of the list, the shorter the distance is between it and the server). A
negated match will be assigned the maximum distance from the server. If
there is no match, the address will get a distance which is further than any
non-negated list element, and closer than any negated element.

Because of the first-match aspect of the algorithm, an element that defines
a subset of another element in the list should come before the broader
element, regardless of whether either is negated. For example, in
1.2.3/24; ! 1.2.3.13; the 1.2.3.13 element is completely useless
because the algorithm will match any lookup for 1.2.3.13 to the 1.2.3/24
element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having
1.2.3.13 blocked by the negation but all other 1.2.3.* hosts fall through.

6.1.2 Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that white space
may appear in a BIND configuration file. To appeal to programmers of all kinds, they can be
written in C, C++, or shell/perl constructs.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

36 July 23, 2001

6.1.2.1 Syntax

/* This is a BIND comment as in C */
// This is a BIND comment as in C++
This is a BIND comment as in common UNIX shells and perl

6.1.2.2 Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND
configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star,
slash). Because they are completely delimited with these characters, they can be
used to comment only a portion of a line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because
the entire comment ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/* This is an incorrect attempt at nesting a comment. */
This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to
the end of the physical line. They cannot be continued across multiple physical
lines; to have one logical comment span multiple lines, each line must use the // pair.

For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number
sign) and continue to the end of the physical line, as in C++ comments.

For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING: you cannot use the semicolon (‘;’) character to start a comment such as
you would in a zone file. The semicolon indicates the end of a configuration
statement.

6.2 Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements end with a
semicolon. Statements and comments are the only elements that can appear without

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 37

enclosing braces. Many statements contain a block of substatements, which are also
terminated with a semicolon.

The following statements are supported:

The logging and options statements may only occur once per configuration.

6.2.1 acl Statement Grammar

acl acl-name {
address_match_list

};

6.2.2 acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name
from a primary use of address match lists: Access Control Lists (ACLs).

Note that an address match list’s name must be defined with acl before it can be
used elsewhere; no forward references are allowed.

The following ACLs are built-in:

acl defines a named IP address matching list, for access control
and other uses.

controls declares control channels to be used by the rndc utility.

include includes a file.

key specifies key information for use in authentication and
authorization using TSIG.

logging specifies what the server logs, and where the log messages
are sent.

options controls global server configuration options and sets
defaults for other statements.

server sets certain configuration options on a per-server basis.

trusted-keys defines trusted DNSSEC keys.

view defines a view.

zone defines a zone.

any Matches all hosts.

none Matches no hosts.

localhost Matches the IP addresses of all interfaces on the system.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

38 July 23, 2001

6.2.3 controls Statement Grammar

controls {

inet (ip_addr | *) [port ip_port] allow { address_match_list }
keys { key_list };

[inet ...;]
};

6.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system
administrators to affect the operation of the local nameserver. These control
channels are used by the rndc utility to send commands to and retrieve non-DNS
results from a nameserver.

An inet control channel is a TCP/IP socket accessible to the Internet, created at the
specified ip_port on the specified ip_addr. If no port is specified, port 953 is used
by default. “*” cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow

and keys clauses. Connections to the control channel are permitted based on the
address permissions in address_match_list. key_id members of the
address_match_list are ignored, and instead are interpreted independently based
the key_list. Each key_id in the key_list is allowed to be used to authenticate
commands and responses given over the control channel by digitally signing each
message between the server and a command client (see in “rndc” on page 12.). All
commands to the control channel must be signed by one of its specified keys to be
honored.

The UNIX control channel type of BIND 8 is not supported in BIND 9.0.0, and is
not expected to be added in future releases. If it is present in the controls statement
from a BIND 8 configuration file, a non-fatal warning will be logged.

6.2.5 include Statement Grammar

include filename;

6.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point that the include

statement is encountered. The include statement facilitates the administration of
configuration files by permitting the reading or writing of some things but not
others. For example, the statement could include private keys that are readable only
by a nameserver.

localnets Matches any host on a network for which the system has an
interface.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 39

6.2.7 key Statement Grammar

key key_id {
algorithm string;
secret string;

};

6.2.8 key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG. See Section 4.4,
“TSIG”, on page 21.

The key_id, also known as the key name, is a domain name uniquely identifying the
key. It can be used in a “server” statement to cause requests sent to that server to be
signed with this key, or in address match lists to verify that incoming requests have
been signed with a key matching this name, algorithm, and secret.

The algorithm_id is a string that specifies a security/authentication algorithm. The
only algorithm currently supported with TSIG authentication is hmac-md5. The
secret_string is the secret to be used by the algorithm, and is treated as a base-64
encoded string.

6.2.9 logging Statement Grammar

logging {
[channel channel_name {
(file path name

[versions (number | unlimited)]
[size size spec]

| syslog (syslog_facility)
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no;]

};]

[category category_name {

channel_name ; [channel_name ; ...]

};]
...

};

6.2.10 logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the
nameserver. Its channel phrase associates output methods, format options and
severity levels with a name that can then be used with the category phrase to select
how various classes of messages are logged.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

40 July 23, 2001

Only one logging statement is used to define as many channels and categories as
are wanted. If there is no logging statement, the logging configuration will be:

logging {
category "default" { "default_syslog"; "default_debug"; };

};

In BIND 9, the logging configuration is only established when the entire
configuration file has been parsed. In BIND 8, it was established as soon as the
logging statement was parsed. When the server is starting up, all logging messages
regarding syntax errors in the configuration file go to the default channels, or to
standard error if the “-g” option was specified.

6.2.10.1 The channel Phrase

All log output goes to one or more channels; you can make as many of
them as you want.

Every channel definition must include a clause that says whether
messages selected for the channel go to a file, to a particular syslog
facility, to the standard error stream, or are discarded. It can optionally
also limit the message severity level that will be accepted by the channel
(the default is info), and whether to include a named-generated time
stamp, the category name and/or severity level (the default is not to
include any).

The word null as the destination option for the channel will cause all
messages sent to it to be discarded; in that case, other options for the
channel are meaningless.

The file destination clause directs the channel to a disk file. It can
include limitations both on how large the file is allowed to become, and
how many versions of the file will be saved each time the file is opened.

The size option for files is simply a hard ceiling on log growth. If the file
ever exceeds the size, then named will not write anything more to it until
the file is reopened; exceeding the size does not automatically trigger a
reopen. The default behavior is not to limit the size of the file.

If you use the version log file option, then named will retain that many
backup versions of the file by renaming them when opening. For
example, if you choose to keep 3 old versions of the file lamers.log then
just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.log.0
is renamed to lamers.log.1, and lamers.log is renamed to lamers.log.0. No
rolled versions are kept by default; any existing log file is simply
appended. The unlimited keyword is synonymous with 99 in current
BIND releases.

Example usage of the size and versions options:

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 41

channel "an_example_channel" {
file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

};

The syslog destination clause directs the channel to the system log. Its
argument is a syslog facility as described in the syslog man page. How
syslog will handle messages sent to this facility is described in the
syslog.conf man page. If you have a system which uses a very old
version of syslog that only uses two arguments to the openlog()

function, then this clause is silently ignored.

The severity clause works like syslog’s “priorities,” except that they
can also be used if you are writing straight to a file rather than using
syslog. Messages which are not at least of the severity level given will
not be selected for the channel; messages of higher severity levels will be
accepted.

If you are using syslog, then the syslog.conf priorities will also
determine what eventually passes through. For example, defining a
channel facility and severity as daemon and debug but only logging
daemon.warning via syslog.conf will cause messages of severity info

and notice to be dropped. If the situation were reversed, with named

writing messages of only warning or higher, then syslogd would print all
messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard
error stream. This is intended for use when the server is running as a
foreground process, for example when debugging a configuration.

The server can supply extensive debugging information when it is in
debugging mode. If the server’s global debug level is greater than zero,
then debugging mode will be active. The global debug level is set either
by starting the named server with the “-d” flag followed by a positive
integer, or by running rndc trace

(Note: the latter method is not yet implemented).

The global debug level can be set to zero, and debugging mode turned off,
by running ndc notrace. All debugging messages in the server have a
debug level, and higher debug levels give more detailed output. Channels
that specify a specific debug severity, for example:
channel "specific_debug_level" {

file "foo";
severity debug 3;

};

will get debugging output of level 3 or less any time the server is in
debugging mode, regardless of the global debugging level. Channels with

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

42 July 23, 2001

dynamic severity use the server's global level to determine what messages
to print.

If print-time has been turned on, then the date and time will be logged.
print-time may be specified for a syslog channel, but is usually
pointless since syslog also prints the date and time. If print-category is
requested, then the category of the message will be logged as well.
Finally, if print-severity is on, then the severity level of the message
will be logged. The print- options may be used in any combination, and
will always be printed in the following order: time, category, severity.
Here is an example where all three print- options are on:

28-Feb-2000 15:05:32.863 general: notice: running

There are four predefined channels that are used for named’s default
logging as follows. How they are used is described in Section 6.2.10.2,
“The category Phrase”, page 43.
channel "default_syslog" {

syslog daemon; // end to syslog's daemon
// facility

severity info; // only send priority info
// and higher

};
channel "default_debug" {

file "named.run"; // write to named.run in
// the working directory
// Note: stderr is used instead
// of "named.run"
// if the server is started
// with the ’-f’ option.

severity dynamic; // log at the server's
// current debug level

};
channel "default_stderr" {// writes to stderr

stderr;

severity info; // only send priority info
// and higher

};
channel "null" {

null; // toss anything sent to
// this channel

};

The default_debug channel has the special property that it only produces
output when the server's debug level is nonzero. It normally writes to a
file named.run in the server’s working directory.

For security reasons, when the “-u” command line option is used, the
named.run file is created only after named has changed to the new UID,
and any debug output generated while named is starting up and still
running as root is discarded. If you need to capture this output, you must
run the server with the “-g” option and redirect standard error to a file.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 43

Once a channel is defined, it cannot be redefined. Thus you cannot alter
the built-in channels directly, but you can modify the default logging by
pointing categories at channels you have defined.

6.2.10.2 The category Phrase

There are many categories, so you can send the logs you want to see
wherever you want, without seeing logs you don’t want. If you don't
specify a list of channels for a category, then log messages in that
category will be sent to the default category instead. If you don’t specify
a default category, the following “default default” is used:
category "default" { "default_syslog"; "default_debug"; };

As an example, let’s say you want to log security events to a file, but you
also want keep the default logging behavior. You'd specify the following:
channel "my_security_channel" {

file "my_security_file";
severity info;

};
category "security" {

"my_security_channel";
"default_syslog";
"default_debug";

};

To discard all messages in a category, specify the null channel:
category "xfer-out" { "null"; };
category "notify" { "null"; };

Following are the available categories and brief descriptions of the types
of log information they contain. More categories may be added in future
BIND releases.

default The default category defines the logging options for
those categories where no specific configuration has
been defined.

general The catch-all. Many things still aren’t classified into
categories, and they all end up here.

database Messages relating to the databases used internally by
the name server to store zone and cache data.

security Approval and denial of requests.

config Configuration file parsing and processing.

resolver DNS resolution, such as the recursive lookups
performed on behalf of clients by a caching name
server.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

notify The NOTIFY protocol.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

44 July 23, 2001

6.2.11 lwres Statement Grammar

This is the grammar of the lwres statement in the named.conf file:
lwres {

[listen-on { ip_addr [port ip_port] ; [ip_addr [port ip_port]
; ...] };]

[view view_name;]
[search {domain_name ; [ip_addr ; ...]};]
[ndots number;]

};

6.2.12 lwres Statement Definition and Usage

The lwres statement configures the name server to also act as a lightweight resolver
server. (See Section 5, “The BIND 9 Lightweight Resolver”, on page 31.) There
may be multiple lwres statements configuring lightweight resolver servers with
different properties.

The listen-on statement specifies a list of addresses (and ports) on which this
instance of a lightweight resolver daemon should accept requests. If this statement is
omitted, requests will be accepted on 127.0.0.1, port 53.

The view statement binds this instance of a lightweight resolver daemon to a view in
the DNS namespace, so that the response will be constructed in the same manner as
a normal DNS query matching this view. If this statement is omitted, the default
view is used, and if there is no default view, an error is triggered.

The search statement is equivalent to the search statement in /etc/resolv.conf. It
provides a list of domains which are appended to relative names in queries.

The ndots dstatement is equivalent to the ndots statement in /etc/resolv.conf. It
indicates the minimum number of dots in a relative domain name that should result
in an exact match lookup before the search path elements are appended.

client Processing of client requests.

network Network operations.

update Dynamic updates.

queries Queries.

dispatch Dispatching of incoming packets to the server
modules where they are to be processed.

dnssec DNSSEC and TSIG protocol processing.

lame-servers Lame servers. These are misconfigurations in
remote servers, discovered by BIND 9 when trying
to query those servers during resolution.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 45

6.2.13 options Statement Grammar

This is the grammar of the option statement in the named.conf file:
options {

[version version_string;]
[directory path_name;]
[named-xfer path_name;]
[tkey-domain domainname;]
[tkey-dhkey key_name key_tag;]
[dump-file path_name;]
[memstatistics-file path_name;]
[pid-file path_name;]
[statistics-file path_name;]
[zone-statistics yes_or_no;]
[auth-nxdomain yes_or_no;]
[deallocate-on-exit yes_or_no;]
[dialup yes_or_no;]
[fake-iquery yes_or_no;]
[fetch-glue yes_or_no;]
[has-old-clients yes_or_no;]
[host-statistics yes_or_no;]
[multiple-cnames yes_or_no;]
[notify yes_or_no | explicit;]
[recursion yes_or_no;]
[rfc2308-type1 yes_or_no;]
[use-id-pool yes_or_no;]
[maintain-ixfr-base yes_or_no;]
[forward (only | first);]
[forwarders { [in_addr ; [in_addr ; ...]] };]
[check-names (master | slave | response)(warn | fail | ignore);]
[allow-notify { address_match_list };]
[allow-query { address_match_list };]

[allow-transfer { address_match_list };]
[allow-recursion { address_match_list };]
[blackhole { address_match_list };]
[listen-on [port ip_port] { address_match_list };]
[listen-on-v6 [port ip_port] { address_match_list };]
[query-source [address (ip_addr | *)] [port (ip_port | *)];]
[max-transfer-time-in number;]
[max-transfer-time-out number;]
[max-transfer-idle-in number;]
[max-transfer-idle-out number;]
[tcp-clients number;]
[recursive-clients number;]
[serial-queries number;]
[transfer-format (one-answer | many-answers);]
[transfers-in number;]
[transfers-out number;]
[transfers-per-ns number;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[max-ixfr-log-size number;]
[coresize size_spec ;]
[datasize size_spec ;]

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

46 July 23, 2001

[files size_spec ;]
[stacksize size_spec ;]
[cleaning-interval number;]
[heartbeat-interval number;]
[interface-interval number;]
[statistics-interval number;]
[topology { address_match_list };]
[sortlist { address_match_list };]
[rrset-order { order_spec ; [order_spec ; ...]] };
[lame-ttl number;]
[max-ncache-ttl number;]
[max-cache-ttl number;]
[sig-validity-interval number ;]
[min-roots number;]
[use-ixfr yes_or_no ;]
[treat-cr-as-space yes_or_no ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[port ip_port ;]
[additional-from-auto yes_or_no ;]
[additional-from-cache yes_or_no ;]

};

6.2.14 options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement
may appear only once in a configuration file. If more than one occurrence is found,
the first occurrence determines the actual options used, and a warning will be
generated. If there is no options statement, an options block with each option set to
its default will be used.

version The version the server should report via a query
of name version.bind in class chaos. The default is
the real version number of this server.

directory The working directory of the server. Any non-
absolute pathnames in the configuration file will
be taken as relative to this directory. The default
location for most server output files (e.g.
named.run) is this directory. If a directory is not
specified, the working directory defaults to ‘.’,
the directory from which the server was started.
The directory specified should be an absolute
path.

named-xfer This option is obsolete. It was used in BIND 8 to
specify the pathname to the named-xfer

program. In BIND 9, no separate named-xfer

program is needed; its functionality is built into
the name server.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 47

tkey-domain The domain appended to the names of all shared
keys generated with TKEY. When a client requests
a TKEY exchange, it may or may not specify the
desired name for the key. If present, the name of
the shared key will be “client specified part” +
“tkey-domain”. Otherwise, the name of the shared
key will be “random hex digits” + “tkey-domain”. In
most cases, the domainname should be the
server’s domain name.

tkey-dhkey The Diffie-Hellman key used by the server to
generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be
able to load the public and private keys from files
in the working directory. In most cases, the
keyname should be the server’s host name.

dump-file The pathname of the file the server dumps the
database to when instructed to do so with rndc

dumpdb. If not specified, the default is
named_dump.db.

memstatistics-file The pathname of the file the server writes
memory usage statistics to on exit. If not
specified, the default is named.memstats.
Not yet implemented in BIND 9.

pid-file The pathname of the file the server writes its
process ID in. If not specified, the default is
operating system dependent, but is usually
/var/run/named.pid or /etc/named.pid. The pid-file
is used by programs that want to send signals to
the running nameserver.

statistics-file The pathname of the file to which the server
appends statistics when instructed to do so using
rndc stats. If not specified, the default is
named.stats in the server’s current directory. The
format of the file is described in Section
6.2.14.13, “The Statistics File”, on page 63.

port The UDP/TCP port number the server uses for
receiving and sending DNS protocol traffic. The
default is 53. This option is mainly intended for
server testing; a server using a port other than 53
will not be able to communicate with the global
DNS. The port option should be placed at the
beginning of the options block, before any other
options that take port numbers or IP addresses, to
ensure that the port value takes effect for all
addresses used by the server.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

48 July 23, 2001

6.2.14.1 Boolean Options

auth-nxdomain If yes, then the AA bit is always set on
NXDOMAIN responses, even if the server is
not actually authoritative. The default is no;
this is a change from BIND 8. If you are using
very old DNS software, you may need to set it
to yes.

deallocate-on-exit This option was used in BIND 8 to enable
checking for memory leaks on exit. BIND 9
ignores the option and always performs the
checks.

dialup If yes, then the server treats all zones as if they
are doing zone transfers across a dial on
demand dialup link, which can be brought up
by traffic originating from this server. This has
different effects according to zone type and
concentrates the zone maintenance so that it all
happens in a short interval, once every
heartbeat-interval and hopefully during
the one call. It also suppresses some of the
normal zone maintenance traffic. The default
is no.
The dialup option may also be specified in
the view and zone statements, in which case
it overrides the global dialup option.
If the zone is a master zone, then the server
will send out a NOTIFY request to all the
slaves. This will trigger the zone serial number
check in the slave (providing it supports
NOTIFY) allowing the slave to verify the zone
while the connection is active.
If the zone is a slave or stub, then the server
will suppress the regular “zone up to date”
(refresh) queries and only perform them when
the heartbeat-interval expires in addition
to sending NOTIFY requests.
Finer control can be achieved by using
notify, which only sends NOTIFY messages;
notify-passive, which sends NOTIFY
messages and suppresses the normal refresh
queries; refresh, which suppresses normal
refresh processing and sends refresh queries
when the heartbeat-interval expires; and
passive, which just disables normal refresh
processing.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 49

fake-iquery In BIND 8, this option was used to enable
simulating the obsolete DNS query type
IQUERY. BIND 9 never does IQUERY
simulation.

fetch-glue This option is obsolete. In BIND 8, fetch-
glue yes caused the server to attempt to fetch
glue resource records it didn’t have when
constructing the additional data section of a
response. (Information present outside of the
authoritative nodes in the zone is called glue
information). This is now considered a bad
idea and BIND 9 never does it.

has-old-clients This option was incorrectly implemented in
BIND 8, and is ignored by BIND 9. To
achieve the intended effect of
has-old-clients yes, specify the two
separate options auth-nxdomain yes and
rfc2308-type1 no instead.

host-statistics In BIND 8, this enables keeping of statistics
for every host with which the nameserver
interacts.
Not yet implemented in BIND 9.

maintain-ixfr-base This option is obsolete. It was used in BIND 8
to determine whether a transaction log was
kept for Incremental Zone Transfer. BIND 9
maintains a transaction log whenever possible.
If you need to disable outgoing incremental
zone transfers, use provide-ixfr no.

multiple-cnames This option was used in BIND 8 to allow a
domain name to allow multiple CNAME
records in violation of the DNS standards.
BIND 9.1 always strictly enforces the
CNAME rules both in master files and
dynamic updates.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

50 July 23, 2001

notify If yes (the default), DNS NOTIFY messages
are sent when a zone the server is authoritative
for changes. See Section 3.3, “Notify”, on
page 10, for more information. The messages
are sent to the servers listed in the zone’s NS
records (except the master server identified in
the SOA MNAME field), and to any servers
listed in the also-notify option.
If explicit, notifies are sent only to servers
explicitly listed using also-notify. If no, no
notifies are sent.
The notify option may also be specified in
the zone statement, in which case it overrides
the options notify statement. It would only
be necessary to turn off this option if it caused
slaves to crash.

recursion If yes, and a DNS query requests recursion,
then the server will attempt to do all the work
required to answer the query. If recursion is off
and the server does not already know the
answer, it will return a referral response. The
default is yes. Note that setting recursion no

does not prevent clients from getting data from
the server’s cache; it only prevents new data
from being cached as an effect of client
queries. Caching may still occur as an effect of
the server’s internal operation, such as
NOTIFY address lookups. See also fetch-

glue above.

rfc2308-type1 Setting this to yes will cause the server to send
NS records along with the SOA record for
negative answers. The default is no. Not yet
implemented in BIND 9.

use-id-pool This option is obsolete. BIND 9 always
allocates query IDs from a pool.

zone-statistics If yes, the server will, by default, collect
statistical data on all zones in the server. These
statistics may be accessed using rndc stats,
which will dump them to the file listed in the
statistics-file. See also Section
6.2.14.13, “The Statistics File”, on page 63.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 51

use-ixfr This option is obsolete. If you need to disable
IXFR to a particular server or servers, see the
information on the provide-ixfr option in
Section 6.2.16, “server Statement Definition
and Usage”, page 64. See also Section 4.2,
“Incremental Zone Transfers (IXFR)”, on page
17.

treat-cr-as-space This option was used in BIND 8 to make the
server treat carriage return (“\r”) characters
the same way as a space or tab character or to
facilitate loading of zone files on a UNIX
system that were generated on an NT or DOS
machine. In BIND 9, both UNIX “\n” and NT/
DOS “\r\n” newlines are always accepted,
and the option is ignored.

min-refresh-time

max-refresh-time

min-retry-time

max-retry-time

These options control the servers behavior on
refreshing a zone (querying for SOA changes
or retrying failed transfers. Usually the SOA
values for the zone are used, but these values
are set by the master, giving the slave server
administrators little control over their
contents.
They allow the administrator to set a minimum
and maximum refresh and retry time either
per-zone, per-view, or per-server. These
options are valid for master, slave and stub
zones, and clamp the SOA refresh and retry
times to the specified values.

additional-from-
auth

The additional-from-auth and
additional-from-cache options control the
behavior of an authoritative server when
answering queries which have additional data,
or when following CNAME and DNAME
chains.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

52 July 23, 2001

additional-from-
cache

When the additional-from-auth and additional-
from-cache options are set to yes (the default)
and a query is being answered from
authoritative data (a zone configured into the
server), the additional data section of the reply
will be filled in using data from other
authoritative zones and from the cache. In
some situations this is undesirable, such as
when there is concern over the correctness of
the cache, or in servers where slave zones may
be added and modified by untrusted third
parties. Also, avoiding the search for this
additional data will speed up server operations
at the possible expense of additional queries to
resolve what would otherwise be provided in
the additional section.
For example, if a query asks for an MX record
for host foo.example.com, and the record
found is "MX 10 mail.example.net", normally
the address records (A, A6, and AAAA) for
mail.example.net will be provided as well, if
known. Setting these options to no disables
this behavior.
These options are intended for use in
authoritative-only servers, or in authoritative-
only views. In other words, they should only
be set to no if the option recursion no; has
also been specified. Setting them to no in a
recursive server will have unexpected side
effects such as causing recursion to not
function.
Specifying additional-from-cache no
actually disables the use of the cache not only
for additional data lookups but also when
looking up the answer. This is usually the
desired behavior in an authoritative-only
server where the correctness of the cached data
is an issue.
When a name server is non-recursively
queried for a name that is not below the apex
of any served zone, it normally answers with
an "upwards referral" to the root servers or the
servers of some other known parent of the
query name. Since the data in an upwards
referral comes from the cache, the server will

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 53

6.2.14.2 Forwarding

The forwarding facility can be used to create a large site-wide cache on a
few servers, reducing traffic over links to external nameservers. It can
also be used to allow queries by servers that do not have direct access to
the Internet, but wish to look up exterior names anyway. Forwarding
occurs only on those queries for which the server is not authoritative and
does not have the answer in its cache.

Forwarding can also be configured on a per-domain basis, allowing for
the global forwarding options to be overridden in a variety of ways. You
can set particular domains to use different forwarders, or have a different
forward only/first behavior, or not forward at all. See Section 6.2.21,
“zone Statement Grammar”, on page 67 for more information.

6.2.14.3 Access Control

Access to the server can be restricted based on the IP address of the
requesting system. See Section 6.1.1, “Address Match Lists”, on page 34
for details on how to specify IP address lists.

not be able to provide upwards referrals when
additional-from-cache no has been specified.
Instead, it will respond to such queries with
REFUSED. This should not cause any
problems since upwards referrals are not
required for the resolution process.

forward This option is only meaningful if the forwarders list is
not empty. A value of first, the default, causes the server
to query the forwarders first, and if that doesn't answer
the question the server will then look for the answer
itself. If only is specified, the server will only query the
forwarders.

forwarders Specifies the IP addresses to be used for forwarding.
The default is the empty list (no forwarding).

allow-notify Specifies which hosts are allowed to notify
slaves of a zone change in addition to the zone
masters. allow-notify may also be specified in
the zone statement, in which case it overrides the
options allow-notify statement. It is only
meaningful for a slave zone. If not specified, the
default is to process notify messages only from a
zone's master.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

54 July 23, 2001

6.2.14.4 Interfaces

The interfaces and ports that the server will answer queries from may be
specified using the listen-on option. listen-on takes an optional port,
and an address_match_list. The server will listen on all interfaces allowed
by the address match list. If a port is not specified, port 53 will be used.

Multiple listen-on statements are allowed. For example,
listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the nameserver on port 53 for the IP address 5.6.7.8, and on
port 1234 of an address on the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all
interfaces.

The listen-on-v6 option is used to specify the ports on which the server
will listen for incoming queries sent using IPv6.

The server does not bind a separate socket to each IPv6 interface address
as it does for IPv4. Instead, it always listens on the IPv6 wildcard address.
Therefore, the only values allowed for the address_match_list argument
to the listen-on-v6 statement are “{ any; }” and “{ none; }”.

allow-query Specifies which hosts are allowed to ask
ordinary questions. allow-query may also be
specified in the zone statement, in which case it
overrides the options allow-query statement.
If not specified, the default is to allow queries
from all hosts.

allow-recursion Specifies which hosts are allowed to make
recursive queries through this server. If not
specified, the default is to allow recursive
queries from all hosts. Note that disallowing
recursive queries for a host does not prevent the
host from retrieving data that is already in the
server’s cache.

allow-transfer Specifies which hosts are allowed to receive
zone transfers from the server. allow-transfer
may also be specified in the zone statement, in
which case it overrides the options allow-

transfer statement. If not specified, the default
is to allow transfers from all hosts.

blackhole Specifies a list of addresses that the server will
not accept queries from or use to resolve a query.
Queries from these addresses will not be
responded to. The default is none.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 55

Multiple listen-on-v6 options can be used to listen on multiple ports:
listen-on-v6 port 53 { any; };
listen-on-v6 port 1234 { any; };

To make the server not listen on any IPv6 address, use
listen-on-v6 { none; };

If no listen-on-v6 statement is specified, the server will not listen on
any IPv6 address.

6.2.14.5 Query Address

If the server doesn't know the answer to a question, it will query other
nameservers. query-source specifies the address and port used for such
queries. For queries sent over IPv6, there is a separate query-source-v6

option. If address is * or is omitted, a wildcard IP address (INADDR_ANY)
will be used. If port is * or is omitted, a random unprivileged port will be
used. The defaults are
query-source address * port *;

query-source-v6 address * port *

Note: query-source currently applies only to UDP queries; TCP queries
always use a wildcard IP address and a random unprivileged port.

6.2.14.6 Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits
on the amount of load that transfers place on the system. The following
options apply to zone transfers.

also-notify Defines a global list of IP addresses that
are also sent NOTIFY messages whenever
a fresh copy of the zone is loaded, in
addition to the servers listed in the zone’s
NS records. This helps to ensure that
copies of the zones will quickly converge
on stealth servers. If an also-notify list
is given in a zone statement, it will
override the options also-notify

statement. When a zone notify statement
is set to no, the IP addresses in the global
also-notify list will not be sent NOTIFY
messages for that zone. The default is the
empty list (no global notification list).

max-transfer-time-in Inbound zone transfers running longer
than this many minutes will be terminated.
The default is 120 minutes (2 hours).

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

56 July 23, 2001

max-transfer-idle-in Inbound zone transfers making no
progress in this many minutes will be
terminated. The default is 60 minutes (1
hour).

max-transfer-time-out Outbound zone transfers running longer
than this many minutes will be terminated.
The default is 120 minutes (2 hours).

max-transfer-idle-out Outbound zone transfers making no
progress in this many minutes will be
terminated. The default is 60 minutes
(1 hour).

serial-queries Slave servers will periodically query
master servers to find out if zone serial
numbers have changed. Each such query
uses a minute amount of the slave server’s
network bandwidth, but more importantly
each query uses a small amount of
memory in the slave server while waiting
for the master server to respond. In
BIND 8, the serial-queries option sets
the maximum number of concurrent serial-
number queries allowed to be outstanding
at any given time. BIND 9 does not limit
the number of outstanding serial queries
and ignores the serial-queries option;
instead, it limits the rate at which the
queries are sent. The maximum rate is
currently fixed at 20 queries per second
but may become configurable in a future
release.

transfer-format Zone transfers can be sent using two
different formats, one-answer and many-

answers. The transfer-format option is
used on the master server to determine
which format it sends. one-answer uses
one DNS message per resource record
transferred. many-answers packs as many
resource records as possible into a
message. many-answers is more efficient,
but is only supported by relatively new
slave servers, such as BIND 9, BIND 8.x
and patched versions of BIND 4.9.5. The
default is many-answers. transfer-
format may be overridden on a per-server
basis by using the server statement.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 57

transfers-in The maximum number of inbound zone
transfers that can be running concurrently.
The default value is 10. Increasing
transfers-in may speed up the
convergence of slave zones, but it also
may increase the load on the local system.

transfers-out The maximum number of outbound zone
transfers that can be running concurrently.
Zone transfer requests in excess of the
limit will be refused. The default value is
10.

transfers-per-ns The maximum number of inbound zone
transfers that can be concurrently
transferring from a given remote
nameserver. The default value is 2.
Increasing transfers-per-ns may speed
up the convergence of slave zones, but it
also may increase the load on the remote
nameserver. transfers-per-ns may be
overridden on a per-server basis by using
the transfers phrase of the server

statement.

transfer-source transfer-source determines which local
address will be bound to IPv4 TCP
connections used to fetch zones
transferred inbound by the server. It also
determines the source IPv4 address, and
optionally the UDP port, used for the
refresh queries and forwarded dynamic
updates. If not set, it defaults to a system
controlled value which will usually be the
address of the interface “closest to” the
remote end. This address must appear in
the remote end’s allow-transfer option
for the zone being transferred, if one is
specified. This statement sets the
transfer-source for all zones, but can be
overridden on a per-view or per-zone basis
by including a transfer-source

statement within the view or zone block
on the configuration file.

transfer-source-v6 The same as transfer-source, except
zone transfers are performed using IPv6.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

58 July 23, 2001

6.2.14.7 Resource Limits

The server’s usage of many system resources can be limited. Some
operating systems don’t support some of the limits. On such systems, a
warning will be issued if the unsupported limit is used. Some operating
systems don’t support limiting resources.

Scaled values are allowed when specifying resource limits. For example,
1G can be used instead of 1073741824 to specify a limit of one gigabyte.
unlimited requests unlimited use, or the maximum available amount.
default uses the limit that was in force when the server was started. See
the description of size_spec in Section 6.1, “Configuration File
Elements”, on page 33 for more details.

notify-source notify-source determines which local
source address, and optionally UDP port,
will be used to send NOTIFY messages.
This address must appear in the slave
server's masters zone clause or in an
allow-notify clause. This statement sets
the notify-source for all zones, but can
be overridden on a per-zone / per-view
basis by including a notify-source

statement within the zone or view block in
the configuration file.

notify-source-v6 Like notify-source, but applies to notify
messages sent to IPv6 addresses.

coresize The maximum size of a core dump. The
default is default. Not yet implemented in
BIND 9.

datasize The maximum amount of data memory the
server may use. The default is default. Not
yet implemented in BIND 9.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 59

6.2.14.8 Periodic Task Intervals

files The maximum number of files the server may
have open concurrently. The default is
unlimited. Note: on some operating systems
the server cannot set an unlimited value and
cannot determine the maximum number of
open files the kernel can support. On such
systems, choosing unlimited will cause the
server to use the larger of the rlim_max for
RLIMIT_NOFILE and the value returned by
sysconf(_SC_OPEN_MAX). If the actual kernel
limit is larger than this value, use limit files

to specify the limit explicitly. Not yet
implemented in BIND 9.

max-ixfr-log-size This option is obsolete; it is accepted and
ignored for BIND 8 compatibility.

recursive-clients The maximum number of simultaneous
recursive lookups the server will perform on
behalf of clients. The default is 1000.

stacksize The maximum amount of stack memory the
server may use. The default is default. Not
yet implemented in BIND 9.

tcp-clients The maximum number of simultaneous client
TCP connections that the server will accept.
The default is 100.

cleaning-interval The server will remove expired resource
records from the cache every cleaning-

interval minutes. The default is 60
minutes. If set to 0, no periodic cleaning
will occur.

heartbeat-interval The server will perform zone maintenance
tasks for all zones marked dialup yes

whenever this interval expires. The default is
60 minutes. Reasonable values are up to 1
day (1440 minutes). If set to 0, no zone
maintenance for these zones will occur. Not
yet implemented in BIND 9.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

60 July 23, 2001

6.2.14.9 Topology

All other things being equal, when the server chooses a nameserver to
query from a list of nameservers, it prefers the one that is topologically
closest to itself. The topology statement takes an address_match_list

and interprets it in a special way. Each top-level list element is assigned a
distance. Non-negated elements get a distance based on their position in
the list, where the closer the match is to the start of the list, the shorter the
distance is between it and the server. A negated match will be assigned
the maximum distance from the server. If there is no match, the address
will get a distance which is further than any non-negated list element, and
closer than any negated element. For example,

topology {
10/8;
!1.2.3/24;
{ 1.2/16; 3/8; };
};

will prefer servers on network 10 the most, followed by hosts on network
1.2.0.0 (netmask 255.255.0.0) and network 3, with the exception of hosts
on network 1.2.3 (netmask 255.255.255.0), which is preferred least of all.

The default topology is
topology { localhost; localnets; };

The topology option is not yet implemented in BIND 9.

6.2.14.10 The sortlist Statement

The response to a DNS query may consist of multiple resource records
(RRs) forming a resource records set (RRset). The name server will
normally return the RRs within the RRset in an indeterminate order (see
the rrset-order statement in the following section, Section 6.2.14.11,
“RRset Ordering”, on page 62). The client resolver code should rearrange
the RRs as appropriate, that is, using any addresses on the local net in

interface-interval The server will scan the network interface
list every interface-interval minutes.
The default is 60 minutes. If set to 0,
interface scanning will only occur when the
configuration file is loaded. After the scan,
listeners will be started on any new
interfaces (provided they are allowed by the
listen-on configuration). Listeners on
interfaces that have gone away will be
cleaned up.

statistics-interval Nameserver statistics will be logged every
statistics-interval minutes. The default
is 60. If set to 0, no statistics will be logged.
Not yet implemented in BIND 9.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 61

preference to other addresses. However, not all resolvers can do this or are
correctly configured. When a client is using a local server the sorting can
be performed in the server, based on the client's address. This only
requires configuring the nameservers, not all the clients.

The sortlist statement (see below) takes an address_match_list and
interprets it even more specifically than the topology statement does (see
Section 6.2.14.9, “Topology”, on page 60). Each top level statement in the
sortlist must itself be an explicit address_match_list with one or
two elements. The first element (which may be an IP address, an IP
prefix, an ACL name or a nested address_match_list) of each top level
list is checked against the source address of the query until a match is
found.

Once the source address of the query has been matched, if the top level
statement contains only one element, the actual primitive element that
matched the source address is used to select the address in the response to
move to the beginning of the response. If the statement is a list of two
elements, then the second element is treated the same as the
address_match_list in a topology statement. Each top level element is
assigned a distance and the address in the response with the minimum
distance is moved to the beginning of the response.

In the following example, any queries received from any of the addresses
of the host itself will get responses preferring addresses on any of the
locally connected networks. Next most preferred are addresses on the
192.168.1/24 network, and after that either the 192.168.2/24 or
192.168.3/24 network with no preference shown between these two
networks. Queries received from a host on the 192.168.1/24 network will
prefer other addresses on that network to the 192.168.2/24 and
192.168.3/24 networks. Queries received from a host on the 192.168.4/24
or the 192.168.5/24 network will only prefer other addresses on their
directly connected networks.
sortlist {

{ localhost; // IF the local host
{ localnets; // THEN first fit on the

192.168.1/24; // following nets
{ 192,168.2/24; 192.168.3/24; }; }; };

{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3

{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2

{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };

{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .1 or .2

{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; };

// if .4 or .5, prefer that net
};

};

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

62 July 23, 2001

The following example will give reasonable behavior for the local host
and hosts on directly connected networks. It is similar to the behavior of
the address sort in BIND 4.9.x. Responses sent to queries from the local
host will favor any of the directly connected networks. Responses sent to
queries from any other hosts on a directly connected network will prefer
addresses on that same network. Responses to other queries will not be
sorted.
sortlist {

{ localhost; localnets; };
{ localnets; };

};

6.2.14.11 RRset Ordering

When multiple records are returned in an answer it may be useful to
configure the order of the records placed into the response. The rrset-

order statement permits configuration of the ordering made of the
records in a multiple record response. See also Section 6.2.14.10, “The
sortlist Statement”, on page 60.

An order_spec is defined as follows:
[class class_name][type type_name][name "domain_name"]

order ordering

If no class is specified, the default is ANY. If no type is specified, the
default is ANY. If no name is specified, the default is “*”.

The legal values for ordering are:

For example:
rrset-order {

class IN type A name "host.example.com" order random;
order cyclic;

};

will cause any responses for type A records in class IN that have
“host.example.com” as a suffix, to always be returned in random order.
All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined—the
last one applies.

If no rrset-order statement is specified, then a default one of:

fixed Records are returned in the order they are defined in the
zone file.

random Records are returned in some random order.

cyclic Records are returned in a round-robin order.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 63

rrset-order { class ANY type ANY name "*"; order cyclic ; };

is used.

Note: The rrset-order statement is not yet implemented in BIND 9.
BIND 9 currently supports only a “random-cyclic” ordering, where the
server randomly chooses a starting point within the RRset and returns the
records in order starting at that point, wrapping around the end of the
RRset if necessary.

6.2.14.12 Tuning

6.2.14.13 The Statistics File

The statistics file generated by BIND 9 is similar, but not identical, to that
generated by BIND 8.

The statistics dump begins with the line +++ Statistics Dump +++

(973798949), where the number in parentheses is a standard UNIX-style

lame-ttl Sets the number of seconds to cache a lame server
indication. 0 disables caching. (This is NOT
recommended.) Default is 600 (10 minutes).
Maximum value is 1800 (30 minutes). Not yet
implemented in BIND 9.

max-ncache-ttl To reduce network traffic and increase
performance the server stores negative answers.
max-ncache-ttl is used to set a maximum
retention time for these answers in the server in
seconds. The default
max-ncache-ttl is 10800 seconds (3 hours).
max-ncache-ttl cannot exceed 7 days and will be
silently truncated to 7 days if set to a greater value.

max-cache-ttl max-cache-ttl sets the maximum time for which
the server will cache ordinary (positive) answers.
The default is one week (7 days).

min-roots The minimum number of root servers that is
required for a request for the root servers to be
accepted. Default is 2. Not yet implemented in
BIND 9.

sig-validity-
interval

Specifies the number of days into the future when
DNSSEC signatures automatically generated as a
result of dynamic updates (see Section 4.1,
“Dynamic Update”, on page 17) will expire. The
default is 30 days. The signature inception time is
unconditionally set to one hour before the current
time to allow for a limited amount of clock skew.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

64 July 23, 2001

timestamp, measured as seconds since January 1, 1970. Following that
line are a series of lines containing a counter type, the value of the
counter, optionally a zone name, and optionally a view name. The lines
without view and zone listed are global statistics for the entire server.
Lines with a zone and view name for the given view and zone (the view
name is omitted for the default view). The statistics dump ends with the
line --- Statistics Dump --- (973798949), where the number is
identical to the number in the beginning line.

The following statistics counters are maintained:

6.2.15 server Statement Grammar

server ip_addr {
[bogus yes_or_no ;]
[provide-ixfr yes_or_no ;]
[request-ixfr yes_or_no ;]
[transfers number ;]
[transfer-format (one-answer | many-answers) ;]
[keys { string ; [string ; [...]] } ;]

};

6.2.16 server Statement Definition and Usage

The server statement defines the characteristics to be associated with a remote
nameserver.

If you discover that a remote server is giving out bad data, marking it as bogus will
prevent further queries to it. The default value of bogus is no. The bogus clause is
not yet implemented in BIND 9.

success The number of successful queries made to the server
or zone. A successful query is defined as query
which returns a NOERROR response other than a
referral response.

referral The number of queries which resulted in referral
responses.

nxrrset The number of queries which resulted in
NOERROR responses with no data.

nxdomain The number of queries which resulted in
NXDOMAIN responses.

recursion The number of queries which caused the server to
perform recursion in order to find the final answer.

failure The number of queries which resulted in a failure
response other than those above.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 65

The provide-ixfr clause determines whether the local server, acting as master, will
respond with an incremental zone transfer when the given remote server, a slave,
requests it. If set to yes, incremental transfer will be provided whenever possible. If
set to no, all transfers to the remote server will be nonincremental. If not set, the
value of the provide-ixfr option in the global options block is used as a default.

The request-ixfr clause determines whether the local server, acting as a slave,
will request incremental zone transfers from the given remote server, a master. If not
set, the value of the request-ixfr option in the global options block is used as a
default.

IXFR requests to servers that do not support IXFR will automatically fall back to
AXFR. Therefore, there is no need to manually list which servers support IXFR and
which ones do not; the global default of yes should always work. The purpose of the
provide-ixfr and request-ixfr clauses is to make it possible to disable the use of
IXFR even when both master and slave claim to support it, for example if one of the
servers is buggy and crashes or corrupts data when IXFR is used.

The server supports two zone transfer methods. The first, one-answer, uses one
DNS message per resource record transferred. many-answers packs as many
resource records as possible into a message. many-answers is more efficient, but is
only known to be understood by BIND 9, BIND 8.x, and patched versions of BIND
4.9.5. You can specify which method to use for a server with the transfer-format
option. If transfer-format is not specified, the transfer-format specified by the
options statement will be used.

transfers is used to limit the number of concurrent inbound zone transfers from
the specified server. If no transfers clause is specified, the limit is set according to
the transfers-per-ns option.

The keys clause is used to identify a key_id defined by the key statement, to be
used for transaction security when talking to the remote server. The key statement
must come before the server statement that references it. When a request is sent to
the remote server, a request signature will be generated using the key specified here
and appended to the message. A request originating from the remote server is not
required to be signed by this key.

Although the grammar of the keys clause allows for multiple keys, only a single key
per server is currently supported.

6.2.17 trusted-keys Statement Grammar

trusted-keys {
string number number number string ;
[string number number number string ; [...]]

};

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

66 July 23, 2001

6.2.18 trusted-keys Statement Definition and Usage

The trusted-keys statement defines DNSSEC security roots. DNSSEC is
described in Section 4.7, “DNSSEC”, on page 24. A security root is defined when
the public key for a non-authoritative zone is known, but cannot be securely
obtained through DNS, either because it is the DNS root zone or its parent zone is
unsigned. Once a key has been configured as a trusted key, it is treated as if it had
been validated and proven secure. The resolver attempts DNSSEC validation on all
DNS data in subdomains of a security root.

The trusted-keys statement can contain multiple key entries, each consisting of
the key’s domain name, flags, protocol, algorithm, and the base-64 representation of
the key data.

6.2.19 view Statement Grammar

view view name {
match-clients { address_match_list } ;
[view_option; ...]
[zone_statement; ...]

};

6.2.20 view Statement Definition and Usage

The view statement is a powerful new feature of BIND 9 that lets a name server
answer a DNS query differently depending on who is asking. It is particularly useful
for implementing split DNS setups without having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by
those clients whose IP addresses match the address_match_list of the view’s match-
clients clause. The order of the view statements is significant—a client query will
be resolved in the context of the first view whose match-clients list matches the
client’s IP address.

Zones defined within a view statement will be only be accessible to clients that
match the view. By defining a zone of the same name in multiple views, different
zone data can be given to different clients, for example, “internal” and “external”
clients in a split DNS setup.

Many of the options given in the options statement can also be used within a view

statement, and then apply only when resolving queries with that view. When no a
view-specific value is given, the value in the options statement is used as a default.
Also, zone options can have default values specified in the view statement; these
view-specific defaults take precedence over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all non-
IN views must contain a hint zone, since only the IN class has compiled-in default
hints.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 67

If there are no view statements in the config file, a default view that matches any
client is automatically created in class IN, and any zone statements specified on the
top level of the configuration file are considered to be part of this default view. If
any explicit view statements are present, all zone statements must occur inside view
statements.

Here is an example of a typical split DNS setup implemented using view statements.
view "internal" {

// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal clients only.
recursion yes;

// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;
file "example-internal.db";

};
};

view "external" {
match-clients { any; };

// Refuse recursive service to external clients.
recursion no;

// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

6.2.21 zone Statement Grammar

zone zone name [class] [{
type (master|slave|hint|stub|forward) ;
[allow-notify { address_match_list } ;]
[allow-query { address_match_list } ;]
[allow-transfer { address_match_list } ;]
[allow-update { address_match_list } ;]
[update-policy { update_policy_rule [...] } ;]
[allow-update-forwarding { address_match_list } ;]
[also-notify { [ip_addr ; [ip_addr ; [...]]] } ;]
[check-names (warn|fail|ignore) ;]
[dialup true_or_false ;]
[file string ;]
[forward (only|first) ;]
[forwarders { [ip_addr ; [ip_addr ; [...]]] } ;]
[ixfr-base string ;]
[ixfr-tmp-file string ;]
[maintain-ixfr-base true_or_false ;]
[masters [port ip_port] { ip_addr [port ip_port] [key key];[...] } ;]
[max-ixfr-log-size number ;]
[max-transfer-idle-in number ;]
[max-transfer-idle-out number ;]
[max-transfer-time-in number ;]
[max-transfer-time-out number ;]

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

68 July 23, 2001

[notify true_or_false ;]
[pubkey number number number string ;]
[transfer-source (ip4_addr | *) ;]
[transfer-source-v6 (ip6_addr | *) ;
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[zone-statistics yes_or_no ;]
[sig-validity-interval number ;]
[database string ;]

}];

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 69

6.2.22 zone Statement Definition and Usage

6.2.22.1 Zone Types

master The server has a master copy of the data for the zone and will be
able to provide authoritative answers for it.

slave A slave zone is a replica of a master zone. The masters list
specifies one or more IP addresses of master servers that the slave
contacts to update its copy of the zone. By default, transfers are
made from port 53 on the servers; this can be changed for all
servers by specifying a port number before the list of IP addresses,
or on a per-server basis after the IP address. Authentication to the
master can also be done with per-server TSIG keys. If a file is
specified, then the replica will be written to this file whenever the
zone is changed, and reloaded from this file on a server restart. Use
of a file is recommended, since it often speeds server start-up and
eliminates a needless waste of bandwidth. Note that for large
numbers (in the tens or hundreds of thousands) of zones per server,
it is best to use a two level naming scheme for zone file names. For
example, a slave server for the zone example.com might place the
zone contents into a file called ex/example.com where ex/ is just the
first two letters of the zone name. (Most operating systems behave
very slowly if you put 100K files into a single directory.)

stub A stub zone is similar to a slave zone, except that it replicates only
the NS records of a master zone instead of the entire zone. Stub
zones are not a standard part of the DNS; they are a feature specific
to the BIND implementation.
Stub zones can be used to eliminate the need for glue NS record in
a parent zone at the expense of maintaining a stub zone entry and a
set of name server addresses in named.conf. This usage is not
recommended for new configurations, and BIND 9 supports it only
in a limited way. In BIND 4/8, zone transfers of a parent zone
included the NS records from stub children of that zone. This
meant that, in some cases, users could get away with configuring
child stubs only in the master server for the parent zone. BIND 9
never mixes together zone data from different zones in this way.
Therefore, if a BIND 9 master serving a parent zone has child stub
zones configured, all the slave servers for the parent zone also need
to have the same child stub zones configured.
Stub zones can also be used as a way of forcing the resolution of a
given domain to use a particular set of authoritative servers. For
example, the caching name servers on a private network using
RFC2157 addressing may be configured with stub zones for 10.in-
addr.arpa to use a set of internal name servers as the authoritative
servers for that domain.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

70 July 23, 2001

6.2.22.2 Class

In general class can now be omitted from a zone’s definition. It is now inherited for the
enclosing view or if there is no explicit view, from the default view which is IN (for
Internet).

The hesiod class is named for an information service from MIT’s Project Athena.
It is used to share information about various systems databases, such as users,
groups, printers and so on. The keyword HS is a synonym for hesiod.

Another MIT development is CHAOSnet, a LAN protocol created in the mid-1970s.
Zone data for it can be specified with the CHAOS class.

forward A “forward zone” is a way to configure forwarding on a per-
domain basis. A zone statement of type forward can contain a
forward and/or forwarders statement, which will apply to queries
within the domain given by the zone name. If no forwarders

statement is present or an empty list for forwarders is given, then
no forwarding will be done for the domain, cancelling the effects
of any forwarders in the options statement. Thus if you want to
use this type of zone to change the behavior of the global forward
option (that is, “forward first to”, then “forward only”, or vice
versa, but want to use the same servers as set globally) you need to
respecify the global forwarders.

hint The initial set of root nameservers is specified using a “hint zone”.
When the server starts up, it uses the root hints to find a root
nameserver and get the most recent list of root nameservers. If no
hint zone is specified for class IN, the server uses a compiled-in
default set of root servers hints. Classes other than IN have no
built-in defaults hints.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 71

6.2.22.3 Zone Options

allow-notify See the description of allow-notify in
Section 6.2.14.3, “Access Control”, on page
53.

allow-query See the description of allow-query under
Section 6.2.14.3, “Access Control”, on page
53.

allow-transfer See the description of allow-transfer
under Section 6.2.14.3, “Access Control”,
on page 53.

allow-update Specifies which hosts are allowed to submit
Dynamic DNS updates for master zones.
The default is to deny updates from all
hosts.

update-policy Specifies a “Simple Secure Update” policy.
See description in Section 6.2.22.4,
“Dynamic Update Policies”, on page 73.

allow-update-
forwarding

Specifies which hosts are allowed to submit
Dynamic DNS updates to slave zones to be
forwarded to the master. The default is
{ none; }, which means that no update
forwarding will be performed. To enable
update forwarding, specify
allow-update-forwarding { any; };.
Specifying values other than { none; } or
{ any; } is usually counterproductive,
since the responsibility for update access
control should rest with the master server,
not the slaves.
Note that enabling the update forwarding
feature on a slave server may expose master
servers relying on insecure IP address based
access control to attacks; see Section 7.3,
“Dynamic Update Security”, on page 84 for
more details.

also-notify Only meaningful if notify is active for this
zone. The set of machines that will receive a
DNS NOTIFY message for this zone is made
up of all the listed nameservers (other than
the primary master) for the zone plus any IP
addresses specified with also-notify.
A port may be specified with each
also-notify address to send the notify
messages to a port other than the default of
53. also-notify is not meaningful for stub
zones. The default is the empty list.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

72 July 23, 2001

check-names This option was used in BIND 8 to restrict
the character set of domain names in master
files and/or DNS responses received from
the network. BIND 9 does not restrict the
character set of domain names and does not
implement the check-names option.

database Specify the type of database to be used for
storing the zone data. The string following
the database keyword is interpreted as a list
of whitespace-delimited words. The first
word identifies the database type, and any
subsequent words are passed as arguments
to the database to be interpreted in a way
specific to the database type.
The default is “rbt”, BIND 9's native in-
memory red-black-tree database. This
database does not take arguments.
Other values are possible if additional
database drivers have been linked into the
server. Some sample drivers are included
with the distribution but none are linked in
by default.

dialup See the description of dialup under Section
6.2.14.1, “Boolean Options”, on page 48.

forward Only meaningful if the zone has a
forwarders list. The only value causes the
lookup to fail after trying the forwarders and
getting no answer, while first would allow
a normal lookup to be tried.

forwarders Used to override the list of global
forwarders. If it is not specified in a zone of
type forward, no forwarding is done for the
zone; the global options are not used.

ixfr-base Was used in BIND 8 to specify the name of
the transaction log (journal) file for dynamic
update and IXFR. BIND 9 ignores the
option and constructs the name of the
journal file by appending “.jnl” to the name
of the zone file.

max-transfer-time-in See the description of
max-transfer-time-in under Section
6.2.14.6, “Zone Transfers”, on page 55.

max-transfer-idle-in See the description of
max-transfer-idle-in under Section
6.2.14.6, “Zone Transfers”, on page 55.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 73

6.2.22.4 Dynamic Update Policies

BIND 9 supports two alternative methods of granting clients the right to
perform dynamic updates to a zone, configured by the allow-update and
update-policy option, respectively.

The allow-update clause works the same way as in previous versions of
BIND. It grants given clients the permission to update any record of any
name in the zone.

The update-policy clause is new in BIND 9 and allows more fine-
grained control over what updates are allowed. A set of rules is specified,

max-transfer-time-
out

See the description of
max-transfer-time-out under Section
6.2.14.6, “Zone Transfers”, on page 55.

max-transfer-idle-
out

See the description of
max-transfer-idle-out under Section
6.2.14.6, “Zone Transfers”, on page 55.

notify See the description of notify under Section
6.2.14.1, “Boolean Options”, on page 48.

pubkey In BIND 8, this option was intended for
specifying a public zone key for verification
of signatures in DNSSEC signed zones
when they are loaded from disk. BIND 9
does not verify signatures on loading and
ignores the option.

zone-statistics If yes, the server will keep statistical
information for this zone, which can be
dumped to the statistics-file defined in
the server options.

sig-validity-
interval

See the description of sig-validity-
interval under Section 6.2.14.12,
“Tuning”, on page 63.

transfer-source See the description of transfer-source
under Section 6.2.14.12, “Tuning”, on page
63.

transfer-source-v6 See the description of transfer-source-v6
under Section 6.2.14.12, “Tuning”, on page
63.

notify-source See the description of notify-source in
Section 6.2.14.6, “Zone Transfers”, on page
55.

notify-source-v6 See the description of notify-source-v6 in
Section 6.2.14.6, “Zone Transfers”, on page
55.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

74 July 23, 2001

where each rule either grants or denies permissions for one or more names
to be updated by one or more identities. If the dynamic update request
message is signed (that is, it includes either a TSIG or SIG(0) record), the
identity of the signer can be determined.

Rules are specified in the update-policy zone option, and are only
meaningful for master zones. When the update-policy statement is
present, it is a configuration error for the allow-update statement to be
present. The update-policy statement only examines the signer of a
message; the source address is not relevant.

This is how a rule definition looks:
(grant | deny) identity nametype name [types]

Each rule grants or denies privileges. Once a messages has successfully
matched a rule, the operation is immediately granted or denied and no
further rules are examined. A rule is matched when the signer matches
the identity field, the name matches the name field, and the type is
specified in the type field.

The identity field specifies a name or a wildcard name. The nametype
field has 4 values: name, subdomain, wildcard, and self.

If no types are specified, the rule matches all types except SIG, NS, SOA,
and NXT. Types may be specified by name, including “ANY” (ANY
matches all types except NXT, which can never be updated).

6.3 Zone File

6.3.1 Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034, describes the concept of a Resource
Record (RR) and explains when each is used. Since the publication of RFC 1034,
several new RRs have been identified and implemented in the DNS. These are also
included.

name Matches when the updated name is the same as the name
in the name field.

subdomain Matches when the updated name is a subdomain of the
name in the name field (which includes the name itself).

wildcard Matches when the updated name is a valid expansion of
the wildcard name in the name field.

self Matches when the updated name is the same as the
message signer. The name field is ignored.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 75

6.3.1.1 Resource Records

A domain name identifies a node. Each node has a set of resource
information, which may be empty. The set of resource information
associated with a particular name is composed of separate RRs. The
order of RRs in a set is not significant and need not be preserved by
nameservers, resolvers, or other parts of the DNS. However, sorting of
multiple RRs is permitted for optimization purposes, for example, to
specify that a particular nearby server be tried first. See Section 6.2.14.10,
“The sortlist Statement”, on page 60 and Section 6.2.14.11, “RRset
Ordering”, on page 62 for details.

The components of a Resource Record are

The following are types of valid RRs (some of these listed, although not
obsolete, are experimental (x) or historical (h) and no longer in general
use):

owner name the domain name where the RR is found.

type an encoded 16 bit value that specifies the type of the
resource in this resource record. Types refer to abstract
resources.

TTL the time to live of the RR. This field is a 32 bit integer
in units of seconds, and is primarily used by resolvers
when they cache RRs. The TTL describes how long a
RR can be cached before it should be discarded.

class an encoded 16 bit value that identifies a protocol
family or instance of a protocol.

RDATA the type and sometimes class-dependent data that
describes the resource.

A a host address.

A6 an IPv6 address.

AAAA Obsolete format of IPv6 address

AFSDB (x) location of AFS database servers. Experimental.

CNAME identifies the canonical name of an alias.

DNAME for delegation of reverse addresses. Replaces the domain
name specified with another name to be looked up.
Described in RFC 2672.

HINFO identifies the CPU and OS used by a host.

ISDN (x) representation of ISDN addresses. Experimental.

KEY stores a public key associated with a DNS name.

LOC (x) for storing GPS info. See RFC 1876. Experimental.

MX identifies a mail exchange for the domain. See RFC 974
for details.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

76 July 23, 2001

The following classes of resource records are currently valid in the DNS:

RDATA is the type-dependent or class-dependent data that describes the
resource:

NS the authoritative nameserver for the domain.

NXT used in DNSSEC to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an
existing name. See RFC 2535 for details.

PTR a pointer to another part of the domain name space.

RP (x) information on persons responsible for the domain.
Experimental.

RT (x) route-through binding for hosts that do not have their
own direct wide area network addresses. Experimental.

SIG (“signature”) contains data authenticated in the secure
DNS. See RFC 2535 for details.

SOA identifies the start of a zone of authority.

SRV information about well known network services
(replaces WKS).

WKS (h) information about which well known network
services, such as SMTP, that a domain supports.
Historical, replaced by newer RR SRV.

X25 (x) representation of X.25 network addresses.
Experimental.

IN the Internet system.

For information about other, older classes of RRs, see Section B.1,
“Classes of Resource Records”, on page 91 of the Appendix.

A for the IN class, a 32 bit IP address.

A6 maps a domain name to an IPv6 address, with a provision
for indirection for leading “prefix” bits.

CNAME a domain name.

DNAME provides alternate naming to an entire subtree of the
domain name space, rather than to a single node. It
causes some suffix of a queried name to be substituted
with a name from the DNAME record’s RDATA.

MX a 16 bit preference value (lower is better) followed by a
host name willing to act as a mail exchange for the owner
domain.

NS a fully qualified domain name.

PTR a fully qualified domain name.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 77

The owner name is often implicit, rather than forming an integral part of
the RR. For example, many nameservers internally form tree or hash
structures for the name space, and chain RRs off nodes. The remaining
RR parts are the fixed header (type, class, TTL) which is consistent for all
RRs, and a variable part (RDATA) that fits the needs of the resource being
described.

The meaning of the TTL field is a time limit on how long an RR can be
kept in a cache. This limit does not apply to authoritative data in zones; it
is also timed out, but by the refreshing policies for the zone. The TTL is
assigned by the administrator for the zone where the data originates.
While short TTLs can be used to minimize caching, and a zero TTL
prohibits caching, the realities of Internet performance suggest that these
times should be on the order of days for the typical host. If a change can
be anticipated, the TTL can be reduced prior to the change to minimize
inconsistency during the change, and then increased back to its former
value following the change.

The data in the RDATA section of RRs is carried as a combination of
binary strings and domain names. The domain names are frequently used
as “pointers” to other data in the DNS.

6.3.1.2 Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol,
and are usually represented in highly encoded form when stored in a
nameserver or resolver. In the examples provided in RFC 1034, a style
similar to that used in master files was employed in order to show the
contents of RRs. In this format, most RRs are shown on a single line,
although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a
blank, then the owner is assumed to be the same as that of the previous
RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class
and type use the mnemonics defined above, and TTL is an integer before
the type field. In order to avoid ambiguity in parsing, type and class
mnemonics are disjoint, TTLs are integers, and the type mnemonic is
always last. The IN class and TTL values are often omitted from
examples in the interests of clarity.

The resource data or RDATA section of the RR are given using
knowledge of the typical representation for the data.

For example, we might show the RRs carried in a message as:

SOA several fields.

ISI.EDU. MX 10 VENERA.ISI.EDU.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

78 July 23, 2001

The MX RRs have an RDATA section which consists of a 16 bit number
followed by a domain name. The address RRs use a standard IP address
format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain
names.

Similarly we might see:

This example shows two addresses for XX.LCS.MIT.EDU, each of a
different class.

6.3.2 Discussion of MX Records

As described above, domain servers store information as a series of resource
records, each of which contains a particular piece of information about a given
domain name (which is usually, but not always, a host). The simplest way to think of
a RR is as a typed pair of datum, a domain name matched with relevant data, and
stored with some additional type information to help systems determine when the
RR is relevant.

MX records are used to control delivery of email. The data specified in the record is
a priority and a domain name. The priority controls the order in which email
delivery is attempted, with the lowest number first. If two priorities are the same, a
server is chosen randomly. If no servers at a given priority are responding, the mail
transport agent will fall back to the next largest priority. Priority numbers do not
have any absolute meaning - they are relevant only respective to other MX records
for that domain name. The domain name given is the machine to which the mail will
be delivered. It must have an associated A record—a CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX
record is in error, and will be ignored. Instead, the mail will be delivered to the
server specified in the MX record pointed to by the CNAME.

For example:

MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32

A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27

A 128.9.0.33

XX.LCS.MIT.EDU. IN A 10.0.0.44

CH A MIT.EDU. 2420

example.com. IN MX 10 mail.example.com.

IN MX 10 mail2.example.com.

IN MX 20 mail.backup.org.

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 79

Mail delivery will be attempted to mail.example.com and mail2.example.com (in
any order), and if neither of those succeed, delivery to mail.backup.org will be
attempted.

6.3.3 Setting TTLs

The time to live (TTL) of the RR field is a 32 bit integer represented in units of
seconds, and is primarily used by resolvers when they cache RRs. The TTL
describes how long a RR can be cached before it should be discarded. The following
three types of TTL are currently used in a zone file.

All of these TTLs default to units of seconds, though units can be explicitly
specified, for example, 1h30m.

6.3.4 Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name) is achieved
by means of the in-addr.arpa domain and PTR records. Entries in the in-addr.arpa
domain are made in least-to-most significant order, read left to right. This is the
opposite order to the way IP addresses are usually written. Thus, a machine with an
IP address of 10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose data
field is the name of the machine or, optionally, multiple PTR records if the machine
has more than one name. For example, in the example.com domain:

(Note: The $ORIGIN lines in the examples are for providing context to the examples
only—they do not necessarily appear in the actual usage. They are only used here to
indicate that the example is relative to the listed origin.)

mail.example.com. IN A 10.0.0.1

mail2.example.com. IN A 10.0.0.2

SOA The last field in the SOA is the negative caching TTL. This controls
how long other servers will cache no-such-domain (NXDOMAIN)
responses from you.
The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives
a default TTL for every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which will
control how long other servers can cache it.

$ORIGIN 2.1.10.in-addr.arpa

3 IN PTR foo.example.com.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

80 July 23, 2001

6.3.5 Other Zone File Directives

The Master File Format was initially defined in RFC 1035 and has subsequently
been extended. While the Master File Format itself is class independent all records
in a Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

6.3.5.1 The $ORIGIN Directive

Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that will be appended to any unqualified records.
When a zone is first read in there is an implicit $ORIGIN <zone-name>. The current
$ORIGIN is appended to the domain specified in the $ORIGIN argument if it is not
absolute.
$ORIGIN example.com
WWW CNAME MAIN-SERVER

is equivalent to
WWW.EXAMPLE.COM CNAME MAIN-SERVER.EXAMPLE.COM.

6.3.5.2 The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

Read and process the file filename as if it were included into the file at this point. If
origin is specified the file is processed with $ORIGIN set to that value, otherwise
the current $ORIGIN is used.

The origin and the current domain name revert to the values they had prior to the
$INCLUDE once the file has been read.

Note: RFC 1035 specifies that the current origin should be restored after
an $INCLUDE, but it is silent on whether the current domain name should
also be restored. BIND 9 restores both of them. This could be construed
as a deviation from RFC 1035, a feature, or both.

6.3.5.3 The $TTL Directive

Syntax: $TTL default-ttl [comment]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs.
Valid TTLs are of the range 0-2147483647 seconds.

$TTL is defined in RFC 2308.

6.3.6 BIND Master File Extension: the $GENERATE Directive

$GENERATE

BINDv9 Administrator Reference Manual BIND 9 Configuration Reference

July 23, 2001 81

Syntax: $GENERATE range hs type rhs [comment]

$GENERATE is used to create a series of resource records that only differ from each
other by an iterator. $GENERATE can be used to easily generate the sets of records
required to support sub /24 reverse delegations described in RFC 2317: Classless
IN-ADDR.ARPA delegation.
$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 0 NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to
0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA CNAME 1.0.0.0.192.IN-ADDR.ARPA
2.0.0.192.IN-ADDR.ARPA CNAME 2.0.0.0.192.IN-ADDR.ARPA
...
127.0.0.192.IN-ADDR.ARPA CNAME 127.0.0.0.192.IN-ADDR.ARPA
.

The $GENERATE directive is a BIND extension and not part of the standard zone file
format

range This can be one of two forms: start-stop or start-stop/step. If the
first form is used then step is set to 1. All of start, stop and step
must be positive.

lhs lhs describes the owner name of the resource records to be created.
Any single $ symbols within the lhs side are replaced by the
iterator value. To get a $ in the output you need to escape the $

using a backslash (“\”), for example, \$. The $ may optionally be
followed by modifiers which change the offset from the interator,
field width, and base. Modifiers are introduced by a left brace
character (“{”) immediately following the $ as
${offset[,width[,base]]}. For example, ${-20,3,d}, which
subtracts 20 from the current value, prints the result as a decimal in
a zero padded field of width 3. Available output forms are decimal
(d), octal (o) and hexadecimal (x or X for uppercase). The default
modifier is ${0,0,d}. If the lhs is not absolute, the current
$ORIGIN is appended to the name.
For compatability with earlier versions $$ is still recognized as
indicating a literal $ in the output.

type At present the only supported types are PTR, CNAME and NS.

rhs rhs is a domain name. It is processed similarly to lhs.

BIND 9 Configuration Reference BINDv9 Administrator Reference Manual

82 July 23, 2001

BINDv9 Administrator Reference Manual BIND 9 Security Considerations

July 23, 2001 83

Section 7. BIND 9 Security Considerations

7.1 Access Control Lists

Access Control Lists (ACLs), are address match lists that you can set up and nickname for
future use in allow-query, allow-recursion, blackhole, allow-transfer, etc.

Using ACLs allows you to have finer control over who can access your nameserver, without
cluttering up your config files with huge lists of IP addresses.

It is a good idea to use ACLs, and to control access to your server. Limiting access to your
server by outside parties can help prevent spoofing and DoS attacks against your server.

Here is an example of how to properly apply ACLs:

// Set up an ACL named “bogusnets” that will block RFC1918 space,
// which is commonly used in spoofing attacks.

acl bogusnets { 0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16; };

// Set up an ACL called our-nets. Replace this with the real IP numbers.

acl our-nets { x.x.x.x/24; x.x.x.x/21; };

options {
...
...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};

zone "example.com" {
type master;
file "m/example.com";
allow-query { any; };

};

This allows recursive queries of the server from the outside unless recursion has been
previously disabled.

For more information on how to use ACLs to protect your server, see the AUSCERT
advisory at
ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns_dos

7.2 chroot and setuid (for UNIX servers)

On UNIX servers, it is possible to run BIND in a chrooted environment (chroot()) by
specifying the “-t” option. This can help improve system security by placing BIND in a
“sandbox,” which will limit the damage done if a server is compromised.

BIND 9 Security Considerations BINDv9 Administrator Reference Manual

84 July 23, 2001

Another useful feature in the UNIX version of BIND is the ability to run the daemon as a
nonprivileged user (-u user). We suggest running as a nonprivileged user when using the
chroot feature.

Here is an example command line to load BIND in a chroot() sandbox,
/var/named, and to run named setuid to user 202:
/usr/local/bin/named -u 202 -t /var/named

7.2.1 The chroot Environment

In order for a chroot() environment to work properly in a particular directory (for
example, /var/named), you will need to set up an environment that includes
everything BIND needs to run. From BIND’s point of view, /var/named is the root of
the filesystem. You will need /dev/null, and any library directories and files that
BIND needs to run on your system. Please consult your operating system’s
instructions if you need help figuring out which library files you need to copy over
to the chroot() sandbox.

If you are running an operating system that supports static binaries, you can also
compile BIND statically and avoid the need to copy system libraries over to your
chroot() sandbox.

7.2.2 Using the setuid Function

Prior to running the named daemon, use the touch utility (to change file access and
modification times) or the chown utility (to set the user id and/or group id) on files to
which you want BIND to write.

7.3 Dynamic Update Security

Access to the dynamic update facility should be strictly limited. In earlier versions of BIND
the only way to do this was based on the IP address of the host requesting the update, by
listing an IP address or network prefix in the allow-update zone option. This method is
insecure since the source address of the update UDP packet is easily forged. Also note that if
the IP addresses allowed by the allow-update option include the address of a slave server
which performs forwarding of dynamic updates, the master can be trivially attacked by
sending the update to the slave, which will forward it to the master with its own source IP
address causing the master to approve it without question.

For these reasons, we strongly recommend that updates be cryptographically authenticated
by means of transaction signatures (TSIG). That is, the allow-update option should list
only TSIG key names, not IP addresses or network prefixes. Alternatively, the new
update-policy option can be used.

Some sites choose to keep all dynamically updated DNS data in a subdomain and delegate
that subdomain to a separate zone. This way, the top-level zone containing critical data such
as the IP addresses of public web and mail servers need not allow dynamic update at all.

BINDv9 Administrator Reference Manual Troubleshooting

July 23, 2001 85

Section 8. Troubleshooting

8.1 Common Problems

8.1.1 It's not working; how can I figure out what’s wrong?

The best solution to solving installation and configuration issues is to take
preventative measures by setting up logging files beforehand (see the sample
configurations in Section 3.1 “Sample Configurations”, page 9). The log files
provide a source of hints and information that can be used to figure out what went
wrong and how to fix the problem.

8.2 Incrementing and Changing the Serial Number

Zone serial numbers are just numbers—they aren’t date related. A lot of people set them to a
number that represents a date, usually of the form YYYYMMDDRR. A number of people
have been testing these numbers for Y2K compliance and have set the number to the year
2000 to see if it will work. They then try to restore the old serial number. This will cause
problems because serial numbers are used to indicate that a zone has been updated. If the
serial number on the slave server is lower than the serial number on the master, the slave
server will attempt to update its copy of the zone.

Setting the serial number to a lower number on the master server than the slave server means
that the slave will not perform updates to its copy of the zone.

The solution to this is to add 2147483647 (2^31-1) to the number, reload the zone and make
sure all slaves have updated to the new zone serial number, then reset the number to what
you want it to be, and reload the zone again.

8.3 Where Can I Get Help?

The last major versions of BIND have been written by Nominum, Inc. according to an
agreement with the Internet Software Consortium (ISC).

Nominum offers a wide range of support and service agreements for BIND. Several levels of
premium support are available which include support for BIND and DHCP, significant
discounts on products and training, and a recognized priority on bug fixes and non-funded
feature requests. In addition, Nominum offers an urgent support package that provides fast
response for urgent issues.

To discuss arrangements for support, contact sales@nominum.com or visit the Nominum web
page at
http://www.nominum.com/services/index.html to learn more.

Troubleshooting BINDv9 Administrator Reference Manual

86 July 23, 2001

BINDv9 Administrator Reference Manual

July 23, 2001 87

Appendices

BINDv9 Administrator Reference Manual

88 July 23, 2001

BINDv9 Administrator Reference Manual

July 23, 2001 89

Appendix A. Acknowledgements

A.1 A Brief History of the DNS and BIND

Although the “official” beginning of the Domain Name System occurred in 1984 with the
publication of RFC 920, the core of the new system was described in 1983 in RFCs 882 and
883. From 1984 to 1987, the ARPAnet (the precursor to today’s Internet) became a testbed
of experimentation for developing the new naming/addressing scheme in an rapidly
expanding, operational network environment. New RFCs were written and published in
1987 that modified the original documents to incorporate improvements based on the
working model. RFC 1034, “Domain Names–Concepts and Facilities,” and RFC 1035,
“Domain Names–Implementation and Specification” were published and became the
standards upon which all DNS implementations are built.

The first working domain name server, called “Jeeves,” was written in 1983-84 by Paul
Mockapetris for operation on DEC Tops-20 machines located at the University of Southern
California’s Information Sciences Institute (USC-ISI) and SRI International’s Network
Information Center (SRI-NIC). A DNS server for Unix machines, the Berkeley Internet
Name Domain (BIND) package, was written soon after by a group of graduate students at
the University of California at Berkeley under a grant from the US Defense Advanced
Research Projects Administration (DARPA). Versions of BIND through 4.8.3 were
maintained by the Computer Systems Research Group (CSRG) at UC Berkeley. Douglas
Terry, Mark Painter, David Riggle and Songnian Zhou made up the initial BIND project
team. After that, additional work on the software package was done by Ralph Campbell.
Kevin Dunlap, a Digital Equipment Corporation employee on loan to the CSRG, worked on
BIND for 2 years, from 1985 to 1987. Many other people also contributed to BIND
development during that time: Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike
Muuss, Jim Bloom and Mike Schwartz. BIND maintenance was subsequently handled by
Mike Karels and O. Kure.

BIND versions 4.9 and 4.9.1 were released by Digital Equipment Corporation (now Compaq
Computer Corporation). Paul Vixie, then a DEC employee, became BIND’s primary
caretaker. Paul was assisted by Phil Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan
Beecher, Andrew Partan, Andy Cherenson, Tom Limoncelli, Berthold Paffrath, Fuat Baran,
Anant Kumar, Art Harkin, Win Treese, Don Lewis, Christophe Wolfhugel, and others.

BIND Version 4.9.2 was sponsored by Vixie Enterprises. Paul Vixie became BIND’s
principal architect/programmer.

BIND versions from 4.9.3 onward have been developed and maintained by the Internet
Software Consortium with support being provided by ISC’s sponsors. As co-architects/
programmers, Bob Halley and Paul Vixie released the first production-ready version of
BIND version 8 in May 1997.

BIND development work is made possible today by the sponsorship of several corporations,
and by the tireless work efforts of numerous individuals.

BINDv9 Administrator Reference Manual

90 July 23, 2001

BINDv9 Administrator Reference Manual

July 23, 2001 91

Appendix B. Historical DNS Information

B.1 Classes of Resource Records

B.1.1 HS = hesiod

The hesiod class is an information service developed by MIT’s Project Athena. It
is used to share information about various systems databases, such as users, groups,
printers and so on. The keyword hs is a synonym for hesiod.

B.1.2 CH = chaos

The chaos class is used to specify zone data for the MIT-developed CHAOSnet, a
LAN protocol created in the mid-1970s.

BINDv9 Administrator Reference Manual

92 July 23, 2001

BINDv9 Administrator Reference Manual

July 23, 2001 93

Appendix C. General DNS Reference Information

C.1 IPv6 addresses (A6)

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces which were
introduced in the DNS to facilitate scalable Internet routing. There are three types of
addresses: Unicast, an identifier for a single interface; Anycast, an identifier for a set of
interfaces; and Multicast, an identifier for a set of interfaces. Here we describe the global
Unicast address scheme. For more information, see RFC 2374.

The aggregatable global Unicast address format is as follows:

Where

The Public Topology is provided by the upstream provider or ISP, and (roughly) corresponds
to the IPv4 network section of the address range. The Site Topology is where you can subnet
this space, much the same as subnetting an IPv4 /16 network into /24 subnets. The Interface
Identifier is the address of an individual interface on a given network. (With IPv6, addresses
belong to interfaces rather than machines.)

The subnetting capability of IPv6 is much more flexible than that of IPv4: subnetting can
now be carried out on bit boundaries, in much the same way as Classless InterDomain
Routing (CIDR).

The internal structure of the Public Topology for an A6 global unicast address consists of:

3 13 8 24 16 64 bits

FP TLA
ID

RES NLA ID SLA ID Interface ID

<------ Public Topology ------>

<-Site Topology->

<------ Interface Identifier ------>

FP = Format Prefix (001)

TLA ID = Top-Level Aggregation Identifier

RES = Reserved for future use

NLA ID = Next-Level Aggregation Identifier

SLA ID = Site-Level Aggregation Identifier

INTERFACE ID = Interface Identifier

3 13 8 24

FP TLA ID RES NLA ID

BINDv9 Administrator Reference Manual

94 July 23, 2001

A 3 bit FP (Format Prefix) of 001 indicates this is a global Unicast address. FP lengths for
other types of addresses may vary.

13 TLA (Top Level Aggregator) bits give the prefix of your top-level IP backbone carrier.

8 Reserved bits

24 bits for Next Level Aggregators. This allows organizations with a TLA to hand out
portions of their IP space to client organizations, so that the client can then split up the
network further by filling in more NLA bits, and hand out IPv6 prefixes to their clients, and
so forth.

There is no particular structure for the Site topology section. Organizations can allocate
these bits in any way they desire.

The Interface Identifier must be unique on that network. On ethernet networks, one way to
ensure this is to set the address to the first three bytes of the hardware address, “FFFE”, then
the last three bytes of the hardware address. The lowest significant bit of the first byte should
then be complemented. Addresses are written as 32-bit blocks separated with a colon, and
leading zeros of a block may be omitted, for example:

3ffe:8050:201:9:a00:20ff:fe81:2b32

IPv6 address specifications are likely to contain long strings of zeros, so the architects have
included a shorthand for specifying them. The double colon (‘::’) indicates the longest
possible string of zeros that can fit, and can be used only once in an address.

BINDv9 Administrator Reference Manual

July 23, 2001 95

Appendix D. Bibliography (and Suggested Reading)

D.1 Request for Comments (RFCs)

Specification documents for the Internet protocol suite, including the DNS, are published as
part of the Request for Comments (RFCs) series of technical notes. The standards
themselves are defined by the Internet Engineering Task Force (IETF) and the Internet
Engineering Steering Group (IESG). RFCs can be obtained online via FTP at
ftp://www.isi.edu/in-notes/RFCxxx.txt (where xxx is the number of the RFC). RFCs are also
available via the Web at http://www.ietf.org/rfc/.

D.1.1 Standards

RFC974. Partridge, C. Mail Routing and the Domain System. January 1986.

RFC1034. Mockapetris, P.V. Domain Names - Concepts and Facilities. P.V. November
1987.

RFC1035. Mockapetris, P. V. Domain Names - Implementation and Specification.
November 1987.

D.1.2 Proposed Standards

RFC2181. Elz, R., R. Bush. Clarifications to the DNS Specification. July 1997.

RFC2308. Andrews, M. Negative Caching of DNS Queries. March 1998.

RFC1995. Ohta, M. Incremental Zone Transfer in DNS. August 1996.

RFC1996. Vixie, P. A Mechanism for Prompt Notification of Zone Changes. August 1996.

RFC2136. Vixie, P., S. Thomson, Y. Rekhter, J. Bound. Dynamic Updates in the Domain
Name System. April 1997.

RFC2845. Vixie, P., O. Gudmundsson, D. Eastlake 3rd, B. Wellington. Secret Key
Transaction Authentication for DNS (TSIG). May 2000.

D.1.3 Proposed Standards Still Under Development

Note: the following list of RFCs are undergoing major revision by the IETF.

RFC1886. Thomson, S., C. Huitema. DNS Extensions to support IP version 6. S. December
1995.

RFC2065. Eastlake, 3rd, D., C. Kaufman. Domain Name System Security Extensions.
January 1997.

RFC2137. Eastlake, 3rd, D. Secure Domain Name System Dynamic Update. April 1997.

D.1.4 Other Important RFCs About DNS Implementation

RFC1535. Gavron, E. A Security Problem and Proposed Correction With Widely Deployed
DNS Software. October 1993.

RFC1536. Kumar, A., J. Postel, C. Neuman, P. Danzig, S. Miller. Common DNS
Implementation Errors and Suggested Fixes. October 1993.

RFC1982. Elz, R., R. Bush. Serial Number Arithmetic. August 1996.

BINDv9 Administrator Reference Manual

96 July 23, 2001

D.1.5 Resource Record Types

RFC1183. Everhart, C.F., L. A. Mamakos, R. Ullmann, P. Mockapetris. New DNS RR
Definitions. October 1990.

RFC1706. Manning, B., R. Colella. DNS NSAP Resource Records. October 1994.

RFC2168. Daniel, R., M. Mealling. Resolution of Uniform Resource Identifiers using the
Domain Name System. June 1997.

RFC1876. Davis, C., P. Vixie, T. Goodwin, I. Dickinson. A Means for Expressing Location
Information in the Domain Name System. January 1996.

RFC2052. Gulbrandsen, A., P. Vixie. A DNS RR for Specifying the Location of Services.
October 1996.

RFC2163. Allocchio, A. Using the Internet DNS to Distribute MIXER Conformant Global
Address Mapping. January 1998.

RFC2230. Atkinson, R. Key Exchange Delegation Record for the DNS. October 1997.

D.1.6 DNS and the Internet

RFC1101. Mockapetris, P. V. DNS Encoding of Network Names and Other Types. April
1989.

RFC1123. Braden, R. Requirements for Internet Hosts - Application and Support. October
1989.

RFC1591. Postel, J. Domain Name System Structure and Delegation. March 1994.

RFC2317. Eidnes, H., G. de Groot, P. Vixie. Classless IN-ADDR.ARPA Delegation. March
1998.

D.1.7 DNS Operations

RFC1537. Beertema, P. Common DNS Data File Configuration Errors. October 1993.

RFC1912. Barr, D. Common DNS Operational and Configuration Errors. February 1996.

RFC1912. Barr, D. Common DNS Operational and Configuration Errors. February 1996.

RFC2010. Manning, B., P. Vixie. Operational Criteria for Root Name Servers. October
1996.

RFC2219. Hamilton, M., R. Wright. Use of DNS Aliases for Network Services. October
1997.

D.1.8 Other DNS-related RFCs

Note: the following list of RFCs, although DNS-related, are not concerned with
implementing software.

RFC1464. Rosenbaum, R. Using the Domain Name System To Store Arbitrary String
Attributes. May 1993.

RFC1713. Romao, A. Tools for DNS Debugging. November 1994.

RFC1794. Brisco, T. DNS Support for Load Balancing. April 1995.

RFC2240. Vaughan, O. A Legal Basis for Domain Name Allocation. November1997.

RFC2345. Klensin, J., T. Wolf, G. Oglesby. Domain Names and Company Name Retrieval.
May 1998.

RFC2352. Vaughan, O. A Convention For Using Legal Names as Domain Names. May
1998.

BINDv9 Administrator Reference Manual

July 23, 2001 97

D.1.9 Obsolete and Unimplemented Experimental RRs

RFC1712. Farrell, C., M. Schulze, S. Pleitner, D. Baldoni. DNS Encoding of Geographical
Location. November 1994.

D.2 Internet Drafts

Internet Drafts (IDs) are rough-draft working documents of the Internet Engineering Task
Force. They are, in essence, RFCs in the preliminary stages of development. Implementors
are cautioned not to regard IDs as archival, and they should not be quoted or cited in any
formal documents unless accompanied by the disclaimer that they are “works in progress.”
IDs have a lifespan of six months after which they are deleted unless updated by their
authors.

D.3 Other Documents About BIND

Albitz, Paul and Cricket Liu. 1998. DNS and BIND. Sebastopol, CA: O’Reilly and Associates.

BINDv9 Administrator Reference Manual

98 July 23, 2001

	BIND9 Administator Reference Manual
	Copyright Page

	Table of Contents
	Section 1. Introduction
	1.1 Scope of Document
	1.2 Organization of This Document
	1.3 Conventions Used in This Document
	1.4 Discussion of Domain Name System (DNS) Basics and BIND
	1.4.1 Nameservers
	1.4.2 Types of Zones
	1.4.3 Servers
	1.4.3.1 Master Server
	1.4.3.2 Slave Server
	1.4.3.3 Caching Only Server
	1.4.3.4 Forwarding Server
	1.4.3.5 Stealth Server

	Section 2. BIND Resource Requirements
	2.1 Hardware requirements
	2.2 CPU Requirements
	2.3 Memory Requirements
	2.4 Nameserver Intensive Environment Issues
	2.5 Supported Operating Systems

	Section 3. Nameserver Configuration
	3.1 Sample Configurations
	3.1.1 A Caching-only Nameserver
	3.1.2 An Authoritative-only Nameserver

	3.2 Load Balancing
	3.3 Notify
	3.4 Nameserver Operations
	3.4.1 Tools for Use With the Nameserver Daemon
	3.4.1.1 Diagnostic Tools
	3.4.1.2 Administrative Tools

	3.4.2 Signals

	Section 4. Advanced Concepts
	4.1 Dynamic Update
	4.2 Incremental Zone Transfers (IXFR)
	4.3 Split DNS
	4.4 TSIG
	4.4.1 Generate Shared Keys for Each Pair of Hosts
	4.4.1.1 Automatic Generation
	4.4.1.2 Manual Generation

	4.4.2 Copying the Shared Secret to Both Machines
	4.4.3 Informing the Servers of the Key's Existence
	4.4.4 Instructing the Server to Use the Key
	4.4.5 TSIG Key Based Access Control
	4.4.6 Errors

	4.5 TKEY
	4.6 SIG(0)
	4.7 DNSSEC
	4.7.1 Generating Keys
	4.7.2 Creating a Keyset
	4.7.3 Signing the Child’s Keyset
	4.7.4 Signing the Zone
	4.7.5 Configuring Servers

	4.8 IPv6 Support in BIND�9
	4.8.1 Address Lookups Using AAAA Records
	4.8.2 Address Lookups Using A6 Records
	4.8.2.1 A6 Chains
	4.8.2.2 A6 Records for DNS Servers

	4.8.3 Address to Name Lookups Using Nibble Format
	4.8.4 Address to Name Lookups Using Bitstring Format
	4.8.5 Using DNAME for Delegation of IPv6 Reverse Addresses

	Section 5. The BIND�9 Lightweight Resolver
	5.1 The Lightweight Resolver Library
	5.2 Running a Resolver Daemon

	Section 6. BIND�9 Configuration Reference
	6.1 Configuration File Elements
	6.1.1 Address Match Lists
	6.1.1.1 Syntax
	6.1.1.2 Definition and Usage

	6.1.2 Comment Syntax
	6.1.2.1 Syntax
	6.1.2.2 Definition and Usage

	6.2 Configuration File Grammar
	6.2.1 acl Statement Grammar
	6.2.2 acl Statement Definition and Usage
	6.2.3 controls Statement Grammar
	6.2.4 controls Statement Definition and Usage
	6.2.5 include Statement Grammar
	6.2.6 include Statement Definition and Usage
	6.2.7 key Statement Grammar
	6.2.8 key Statement Definition and Usage
	6.2.9 logging Statement Grammar
	6.2.10 logging Statement Definition and Usage
	6.2.10.1 The channel Phrase
	6.2.10.2 The category Phrase

	6.2.11 lwres Statement Grammar
	6.2.12 lwres Statement Definition and Usage
	6.2.13 options Statement Grammar
	6.2.14 options Statement Definition and Usage
	6.2.14.1 Boolean Options
	6.2.14.2 Forwarding
	6.2.14.3 Access Control
	6.2.14.4 Interfaces
	6.2.14.5 Query Address
	6.2.14.6 Zone Transfers
	6.2.14.7 Resource Limits
	6.2.14.8 Periodic Task Intervals
	6.2.14.9 Topology
	6.2.14.10 The sortlist Statement
	6.2.14.11 RRset Ordering
	6.2.14.12 Tuning
	6.2.14.13 The Statistics File

	6.2.15 server Statement Grammar
	6.2.16 server Statement Definition and Usage
	6.2.17 trusted-keys Statement Grammar
	6.2.18 trusted-keys Statement Definition and Usage
	6.2.19 view Statement Grammar
	6.2.20 view Statement Definition and Usage
	6.2.21 zone Statement Grammar
	6.2.22 zone Statement Definition and Usage
	6.2.22.1 Zone Types
	6.2.22.2 Class
	6.2.22.3 Zone Options
	6.2.22.4 Dynamic Update Policies

	6.3 Zone File
	6.3.1 Types of Resource Records and When to Use Them
	6.3.1.1 Resource Records
	6.3.1.2 Textual expression of RRs

	6.3.2 Discussion of MX Records
	6.3.3 Setting TTLs
	6.3.4 Inverse Mapping in IPv4
	6.3.5 Other Zone File Directives
	6.3.5.1 The $ORIGIN Directive
	6.3.5.2 The $INCLUDE Directive
	6.3.5.3 The $TTL Directive

	6.3.6 BIND Master File Extension: the $GENERATE Directive

	Section 7. BIND�9 Security Considerations
	7.1 Access Control Lists
	7.2 chroot and setuid (for UNIX servers)
	7.2.1 The chroot Environment
	7.2.2 Using the setuid Function

	7.3 Dynamic Update Security

	Section 8. Troubleshooting
	8.1 Common Problems
	8.1.1 It's not working; how can I figure out what’s wrong?

	8.2 Incrementing and Changing the Serial Number
	8.3 Where Can I Get Help?

	Appendix A. Acknowledgements
	A.1 A Brief History of the DNS and BIND

	Appendix B. Historical DNS Information
	B.1 Classes of Resource Records
	B.1.1 HS = hesiod
	B.1.2 CH = chaos

	Appendix C. General DNS Reference Information
	C.1 IPv6 addresses (A6)

	Appendix D. Bibliography (and Suggested Reading)
	D.1 Request for Comments (RFCs)
	D.1.1 Standards
	D.1.2 Proposed Standards
	D.1.3 Proposed Standards Still Under Development
	D.1.4 Other Important RFCs About DNS Implementation
	D.1.5 Resource Record Types
	D.1.6 DNS and the Internet
	D.1.7 DNS Operations
	D.1.8 Other DNS-related RFCs
	D.1.9 Obsolete and Unimplemented Experimental RRs

	D.2 Internet Drafts
	D.3 Other Documents About BIND

