

QNX® Neutrino® Realtime OS:
Kernel Benchmark Methodology

This document contains CONFIDENTIAL INFORMATION of QNX Software Systems Ltd.
and may not be distributed or the information herein disclosed without the express written
permission of QSSL.

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 2

Table of Contents

Introduction .. 3

Benchmark Methodology .. 4

Kernel Entry.. 4

Context Switching.. 5

Message Passing ... 6

Pulses.. 7

Synchronization ... 8

Mutexes... 8

Semaphores.. 10

Timers ... 12

Signals .. 13

Threads ... 14

Message Queues.. 15

Summary... 17

About QNX Software Systems.. 17

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 3

Introduction
This document describes the outline and methodology of the QNX® Neutrino® kernel benchmarks suite,
the results of which are available on a per-platform basis in the “QNX Neutrino Realtime OS: Kernel
Benchmark Results” documents. It is recommended that this methodology overview be read in
conjunction with those results to provide context as to what each individual test is measuring, the rationale
behind each group of tests, and their relevance to real-world application performance. The following
sections include an overview of the principles and operations involved in each test group, and details on
any specific considerations and implementations.

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 4

 Benchmark Methodology
The methodology for this benchmark series contains some assumptions regarding overhead. The average
cost of a single instance of an operation is calculated from the total elapsed time required to perform a
large number of iterations of each such operation. The number of iterations required to obtain a
representative value is scaled to the clock speed of the host processor, typically in the order of millions.
Averaging the benchmark in this fashion removes the need for a fine-granularity time-stamp and reduces
variance. (For example, a single iteration may be skewed by an external or clock interrupt.)

The overhead of the empty loop itself is either insignificant or can be measured and eliminated. The
average cost is considered a more appropriate measure than the worst-case time, as that metric can be
adversely affected by such random factors as unrelated system activity and interrupt latencies, which are
dependent on particular hardware peripherals and installed drivers. Elements that may legitimately affect
the average performance of an operation, such as alternate kernel code paths or thread rescheduling and
context switching, are accounted for with variants of each benchmark test designed to explicitly and
consistently evoke those situations.

Kernel Entry
The QNX Neutrino realtime operating system architecture comprises a microkernel, the process manager,
and extended services provided by user-level managers. The microkernel provides such core facilities as
message passing, thread scheduling, timers, synchronization objects, and signals, whereas the process
manager builds on the kernel facilities to provide additional process-level semantics, memory
management, and pathname management. Optional extended services available include the file system,
TCP/IP network protocols, and message queues.

The kernel is entered through a trap or software interrupt from a wrapper routine in the C library
corresponding to each kernel primitive. Parameters and results are passed directly in registers or on the
stack, and the kernel executes largely in the context of the calling thread, making it a very efficient
interface. The process manager executes as a set of schedulable threads in its own process context, and
parameters and results are exchanged using message passing. Extended facilities provided by external
servers, which include named semaphores and message queues, require both message passing and two full
context switches, which is why they incur the most overhead.

As a result, the relative performance of the various primitive operations profiled below is dependent on
which layer implements that facility. This factor should also be considered when interpreting some
external UNIX-derived benchmarks, which, for example, may use the getppid() call to illustrate the
“system call overhead.” Under QNX Neutrino this is an overly pessimistic measurement, as this particular
routine is implemented by the process manager rather than by the microkernel. Since this is a low-
bandwidth call by applications, it is not necessary to optimize this by implementing it within the kernel;
rather the bias is towards keeping the microkernel small.

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 5

Kernel call
This test measures the overhead from a kernel call by timing the simplest possible facility provided by the
microkernel; this is the ClockId() call, which returns a per-thread clock identifier for use in subsequent
ClockTime() calls.

Benchmark Loop

ClockId(0, 0);

Process manager call
This test measures the overhead of making a process manager call by timing the simplest possible facility
provided by the process manager; an example of this is the getppid() routine, which returns the parent
of the calling process. Unlike the getpid() process identifier, which is invariant and therefore cacheable
in thread local storage (TLS), the parent process is potentially changeable (consider a process whose
parent terminates), meaning the process manager is required to implement this call.

Benchmark Loop

getppid();

Context Switching
Context switch operations are frequent in a realtime microkernel operating system. In such an
environment, hardware interrupts, signals, message passing, and the manipulation of synchronization
objects can trigger thread rescheduling, and non-core functionality is performed outside of the kernel by
the process manager or external server processes. An efficient context switching implementation is
essential to overall system performance.

Yield (self)
This test measures the overhead of a high-priority thread yielding the processor using the POSIX
sched_yield() call. If threads of the same priority are ready to run, the calling thread is placed at the
end of the ready queue for that priority, and a context switch occurs. In this case, as there are no other
eligible threads, the running thread continues without a context switch.

Initialization

param.sched_priority = sched_get_priority_max(SCHED_FIFO);
sched_setscheduler(0, SCHED_FIFO, ¶m);

Benchmark Loop

sched_yield();

Yield (inter-thread, inter-process)
These tests measure the overhead of an inter-thread (or inter-process) context switch. The effect of the
sched_yield() calls on two threads, which are created at the same high priority, is to alternate their use

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 6

of the processor and perform context switches between them. In a multiprocessor (SMP) environment, the
“CPU affinity” of each thread is set to bind them to the same processor, ensuring that this test measures
only the cost of context switching, without any inter-processor synchronization overhead. A full process
context switch is typically more expensive than a thread context switch, as the kernel virtual memory
subsystem has more overhead in switching the address space. (For example, a TLB flush is required on
MMU architectures with untagged TLBs, such as the x86.)

Thread/Process 1 Benchmark Loop Thread/Process 2 Benchmark Loop

sched_yield(); sched_yield();

Message Passing
Message-passing facilities are core primitives provided by the microkernel. Every QNX Neutrino
application, including file systems, TCP/IP networking, and device drivers, is implemented as a team of
cooperating threads and processes using the send/receive/reply messaging interface. Inter-process
communication (IPC) occurs at specified transitions within the system, rather than asynchronously. The
synchronous message-passing model facilitates robust client-server design, whereby application systems
can be designed as a number of modular server processes handling client requests.

Messages
Message passing is inherently a blocking operation that synchronizes the execution of the sending thread;
the act of sending the data also causes the sender to be blocked and the receiver to be scheduled for
execution. This happens without requiring any explicit work by the microkernel to determine which thread
or process to run next. Execution and data move directly from one context to another. Using message
passing, a client sends a request to a server and becomes blocked. The server receives the messages in
priority order from clients, processes them, and replies when it can satisfy a request. At this point the
client is unblocked and continues.

Message MsgSend / MsgReceive / MsgReply
These tests measure the amount of time to perform a message pass between two different processes. Each
cycle of the test loop requires three kernel calls and two context switches. A message containing a certain
amount of data is sent in one direction with MsgSend(), and another amount of data is returned with
MsgReply(). Four test configurations are used, whereby the size of the messages is varied as shown in
the following table:

Test MsgSend() bytes MsgReply() bytes

No data 0 0

Send data 1024 0

Reply data 0 1024

Send + Reply data 1024 1024

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 7

Initialization

chid = ChannelCreate(0);
coid = ConnectAttach(0, getppid(), chid,

 _NTO_SIDE_CHANNEL, 0);

Server Process Benchmark Loop Client Process Benchmark Loop

rcvid = MsgReceive(chid, msg1, MsgSend(coid, msg1, len1, msg2, len2);
len1, NULL);

MsgReply(rcvid, EOK, msg2, len2);

Pulses
A pulse is a non-blocking, unidirectional message with a small data payload (four bytes). The pulse may
be queued in the kernel if there is no blocked reader and it cannot be delivered immediately. Pulses are
commonly used as a notification mechanism within interrupt handlers or for per-process timer expiry. For
example, a pulse may be used as the associated event for InterruptAttachEvent() or
timer_create(). Pulses may also be used for a server to signal to clients the occurrence of an event of
interest, such as in select() processing.

Pulse MsgSendPulse / MsgReceivePulse
This test measures the time taken to send and receive a pulse within a single thread. Although each
operation requires a kernel call, and the kernel must buffer the pulse, there are no context switches
involved.

Initialization

chid = ChannelCreate(0);
coid = ConnectAttach(0, getpid(), chid, _NTO_SIDE_CHANNEL, 0);

Benchmark Loop

MsgSendPulse(coid, -1, 0, 0);
MsgReceivePulse(chid, &pulse, sizeof(pulse), NULL);

Pulse MsgSendPulse / MsgReceivePulse (inter-thread)
This test measures the time taken to send and receive a pulse using two threads of the same process. The
thread sending the pulse is created at a lower priority than the one waiting to receive it. This relationship
forces the threads to alternately block and unblock each other as the pulse is delivered without kernel
buffering, and ensures a context switch is associated with each pulse transfer.

Initialization

chid = ChannelCreate(0);
coid = ConnectAttach(0, getpid(), chid, _NTO_SIDE_CHANNEL, 0);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 8

Thread 1 Benchmark Loop Thread 2 Benchmark Loop (lower priority)

MsgReceivePulse(chid, &pulse, MsgSendPulse(coid, -1, 0, 0);
sizeof(pulse), NULL);

Pulse MsgSendPulse / MsgReceivePulse (inter-process)
This test measures the time taken to send and receive a pulse between two different processes. The process
sending the pulse is created at a lower priority than the one waiting to receive it. This relationship forces
the processes to alternately block and unblock each other as the pulse is delivered without kernel
buffering, and ensures a context switch is associated with each pulse transfer.

Initialization

chid = ChannelCreate(0);
coid = ConnectAttach(0, getppid(), chid,
 _NTO_SIDE_CHANNEL, 0);

Process 1 Benchmark Loop Process 2 Benchmark Loop (lower priority)

MsgReceivePulse(chid, &pulse, MsgSendPulse(coid, -1, 0, 0);
sizeof(pulse), NULL);

Synchronization
QNX Neutrino supports a full complement of POSIX 1003.1 thread synchronization primitives, including
mutexes, semaphores, and condition variables. These facilities allow multiple threads, of the same process
or of different processes, to protect critical sections of code or to coordinate access to a shared resource or
memory area.

Mutexes
A mutex is an appropriate simple synchronization object for use in permitting only a single thread at a
time into a critical section of code. For example, when updating a shared doubly linked list, if multiple
threads were allowed to enqueue/dequeue elements in an uncontrolled manner, the link pointers could
become inconsistent and corrupt the list. By controlling access to the list using a mutex only, a single
thread will be able to modify it at any one time, and any other thread attempting to do so will block until
the mutex is unlocked. A mutex is a more elegant, fine-grained, and multiprocessor-safe mechanism for
performing such synchronization than disabling interrupts or thread switching. An efficient mutex
implementation is thus important to the performance of all multithreaded applications. In fact, many
internal services of QNX Neutrino, such as the file system, network protocol stacks, and device drivers, as
well as the implementation of thread safety where required within the C library, rely heavily on mutexes
to provide such synchronization.

Uncontested pthread_mutex_lock / pthread_mutex_unlock
This test measures the time taken to lock and unlock a mutex. Because the normal use of a mutex is to
enclose a small critical section of code within the scope of the locked mutex, it is appropriate to measure
this complete cycle as a combined item. The mutex is created with default attributes and will be

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 9

uncontested in this test because no other thread is attempting to acquire a lock. Therefore, on most
platforms, it will be unnecessary to enter the kernel, as the mutex can be safely manipulated using native
processor support (with instructions designed for atomic memory modification, such as the x86 cmpxchg
or the lwarx/stwcx sequence of the PowerPC). On processors without this functionality, the mutex
operations must either enter the kernel or emulate a suitable synchronization primitive.

Initialization

pthread_mutex_init(&mutex, NULL);

Benchmark Loop

pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);

Unavailable pthread_mutex_trylock
This test measures the time taken to attempt to lock an already locked mutex. The mutex is created with
default attributes. As this is an unsuccessful non-blocking probe of the mutex state, it is again unnecessary
to enter the kernel or to reschedule any threads.

Initialization

pthread_mutex_init(&mutex, NULL);
pthread_mutex_lock(&mutex);

Benchmark Loop

pthread_mutex_trylock(&mutex, NULL);

In-kernel pthread_mutex_lock / pthread_mutex_unlock
This test measures the time to lock and unlock a mutex by entering the kernel. Unlike the previous tests,
which can exploit native processor support to directly manipulate the mutex, this set of operations is
forced into the kernel. The PTHREAD_PRIO_PROTECT attribute is used to achieve this, as locking such
a mutex implies the kernel may make an immediate priority change. In comparison, the default
PTHREAD_PRIO_INHERIT attribute adjusts thread priorities to avoid priority inversion only when a
higher-priority thread contests the locked mutex. Although this test forces kernel entry, the mutex is
uncontested, and thus no rescheduling or context switches are required.

Initialization

pthread_mutexattr_init(&attr);
pthread_mutexattr_setprotocol(&attr, PTRHEAD_PRIO_PROTECT);
pthread_mutexattr_setprioceiling(&attr, getprio(0));
pthread_mutex_init(&mutex, &attr);

Benchmark Loop

pthread_mutex_lock(&mutex);
pthread_mutex_unlock(&mutex);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 10

Contested pthread_mutex_lock / pthread_mutex_unlock
This test measures the time to lock and unlock a contested mutex (that is, one locked or blocked-on by
another thread). During this test two threads access four mutexes in a lock-step fashion to force such
locking collisions. Entry into the kernel is necessary to resolve this contention and to perform the required
thread rescheduling and context switching as the threads alternately block and unblock each other. Each
cycle of the test loops comprises four contested mutex lock/unlock pairs and four uncontested mutex
operations. These additional operations, which are necessary to interlock the contested accesses and
ensure collisions, will be handled without kernel intervention and their overhead can be measured and
accounted for in the final result.

Initialization

pthread_mutex_init(&mutex1);
pthread_mutex_init(&mutex2);
pthread_mutex_init(&mutex3);
pthread_mutex_init(&mutex4);
pthread_mutex_lock(&mutex4); pthread_mutex_lock(&mutex1);

Thread 1 Benchmark Loop Thread 2 Benchmark Loop

pthread_mutex_lock(&mutex1); pthread_mutex_lock(&mutex3);
pthread_mutex_lock(&mutex3); pthread_mutex_lock(&mutex2);
pthread_mutex_unlock(&mutex1); pthread_mutex_unlock(&mutex3);
pthread_mutex_unlock(&mutex4); pthread_mutex_unlock(&mutex1);
pthread_mutex_lock(&mutex2); pthread_mutex_lock(&mutex4);
pthread_mutex_lock(&mutex4); pthread_mutex_lock(&mutex1);
pthread_mutex_unlock(&mutex2); pthread_mutex_unlock(&mutex4);
pthread_mutex_unlock(&mutex3); pthread_mutex_unlock(&mutex2);

Semaphores
A semaphore is a flexible synchronization object that has a non-negative integer count and a set of
blocked threads associated with it. A semaphore can be used to control access to a pool of resources or to
indicate the occurrence of events as in a producer/consumer paradigm. Semaphores are explicitly defined
to work between processes and with signals, which makes them a common method of inter-process or
signal-handler synchronization in portable code. It is typical to use a mutex to synchronize between
threads in the same process, and to use a semaphore to synchronize between different processes. Unlike
the QNX Neutrino implementation of a mutex, which optimizes the uncontested cases, a semaphore
operation always results in kernel entry.

Unnamed semaphore unavailable sem_trywait
This test measures the time taken to attempt to wait on a zero-valued (locked) semaphore. Although each
semaphore operation requires a kernel call, there are no context switches involved since this is a non-
blocking unsuccessful probe of the semaphore state.

Initialization

sem_init(&sem, 0, 0);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 11

Benchmark Loop

sem_trywait(&sem);

Unnamed semaphore sem_post / sem_wait (self)
This test measures the time taken to increment and decrement a semaphore within a single thread.
Although each semaphore operation requires a kernel call, there are no context switches involved.

Initialization

sem_init(&sem, 0, 0);

Benchmark Loop

sem_post(&sem);
sem_wait(&sem);

Unnamed semaphore sem_post / sem_wait (inter-thread)
This test measures the time taken to increment and decrement a semaphore using two threads of the same
process. The thread incrementing the semaphore is created at a lower priority than the one attempting to
decrement it. This relationship forces the threads to alternately block and unblock each other as the
semaphore count toggles between 0 and 1, and ensures a context switch is associated with each semaphore
access.

Initialization

sem_init(&sem, 0, 0);

Thread 1 Benchmark Loop Thread 2 Benchmark Loop (lower priority)

sem_wait(&sem); sem_post(&sem);

Unnamed semaphore sem_post / sem_wait (inter-process)
This test measures the time taken to increment and decrement a semaphore between two different
processes. Because the unnamed semaphore is to be shared among processes, the semaphore object is
created in a shared-memory region in order to be accessible by both processes. The process incrementing
the semaphore is created at a lower priority than the one attempting to decrement it. This relationship
forces the processes to alternately block and unblock each other as the semaphore count toggles between 0
and 1, and ensures a context switch is associated with each semaphore access.

Initialization

fd = shm_open(“/sem”, O_RDWR|O_CREAT, S_IRUSR|S_IWUSR);
ftruncate(fd, sizeof(sem_t));
sem = mmap(NULL, sizeof(sem_t), PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
sem_init(sem, !0, 0);

Process 1 Benchmark Loop Process 2 Benchmark Loop (lower priority)

sem_wait(sem); sem_post(sem);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 12

Named semaphore sem_trywait / sem_post / sem_wait
These tests measure the time taken to increment and decrement a named semaphore. A named semaphore
is a mechanism for processes that are not sharing a common address space to synchronize with one
another. Named semaphores in QNX Neutrino are an extension provided by an external server (mqueue),
rather than being primitive kernel objects, and as such offer lower performance than their unnamed
counterpart. These tests are similar to those above, with the sole difference being in the way the named
semaphore is created.

Initialization

sem = sem_open(“/sem”, O_ACCMODE|O_CREAT, S_IRUSR|S_IWUSR, 0);

Timers
QNX Neutrino implements POSIX 1003.1 clock and timer facilities, including per-process notification of
timer expiry via realtime signals (and other event types, including native pulses). Timers are primitives
provided directly by the microkernel, and hence may be manipulated very efficiently.

Timer timer_create / timer_delete
This test measures the time taken to create and destroy a per-process timer. An explicit user event, in this
case a SIGALRM signal, is associated with the timer.

Initialization

SIGEV_SIGNAL_INIT(&event, SIGALRM);

Benchmark Loop

timer_create(CLOCK_REALTIME, &event, &timer);
timer_delete(timer);

Timer arming timer_settime
This test measures the time taken to reset and re-arm a per-process timer. In the general POSIX interface,
the expiry time may be specified as either a relative or absolute value, and the time remaining from a
previous arming of the timer may be returned. In this case, an absolute future time is used (so that the
timer will not fire during the benchmark) and the previous timeout details are not requested.

Initialization

timer_create(CLOCK_REALTIME, NULL, &timer);
timeout.it_value.tv_sec = time(NULL) + 60, timeout.it_value.tv_nsec = 0;
timeout.it_interval.tv_sec = timeout.it_interval.tv_nsec = 0;

Benchmark Loop

timer_settime(timer, TIMER_ABSTIME, &timeout, NULL);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 13

Signals
Signals are used by the operating system to report synchronous exceptions (such as SIGSEGV, SIGBUS, or
SIGFPE), and by application processes as asynchronous event notifications (via a sigevent structure or
an explicit kill()). QNX Neutrino implements the Realtime Extensions to the POSIX 1003.1 signal
facilities. These extensions include the SA_SIGINFO attribute, the association of an application-defined
value with each signal, the ability to queue pending signals, and the prioritized receipt of signals within the
defined realtime range.

Signal delivery (self)
This test measures the time taken to raise and handle a signal within an individual thread. An empty
signal-catching function is installed for execution upon receipt of the signal. Although each signal
operation requires a kernel call, there are no context switches involved.

Initialization

void emptyhandler(int signo) {}

sa.sa_handler = emptyhandler;
sigfillset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(SIGUSR1, &sa, NULL);

Benchmark Loop

kill(pid, SIGUSR1);

Signal delivery (inter-thread, inter-process)
This test measures the time taken to generate and deliver a signal between two threads of the same process
or between two different processes. The entity generating the signal is created at a lower priority than the
one accepting it. This relationship ensures that the delivery of each signal requires a context switch and
that pending signals are neither queued nor discarded, as the signal will be immediately accepted.

Initialization

void emptyhandler(int signo) {}

sa.sa_handler = emptyhandler;
sigfillset(&sa.sa_mask);
sa.sa_flags = 0;
sigaction(SIGUSR1, &sa, NULL);
sigfillset(&iset), sigdelset(&iset, SIGUSR1);

Thread/Process 1 Benchmark Loop Thread/Process 2 Benchmark Loop (lower priority)

SignalWaitinfo(&iset, NULL); kill(pid, SIGUSR1);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 14

Threads
A thread is a single flow of control within a process, where a process is an address space in which one or
more threads execute. Threads provide a framework for certain classes of application, in particular
client/server models, to leverage concurrency and exploit any underlying SMP parallelism. The QNX
Neutrino microkernel directly supports POSIX threads as schedulable entities, although the process
manager is used to provide additional process-level semantics.

Thread pthread_create / pthread_join
This test measures the time to create, schedule, and terminate a thread. The thread executes an empty
function, the return from which is an implicit call to pthread_exit().

Initialization

void *emptyfunction(void *arg) {return(arg);}

pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);

Benchmark Loop

pthread_create(&tid, &attr, emptyfunction, NULL);
pthread_join(tid, NULL);

Thread pthread_create / pthread_join (non-lazy stack)
This test is similar to the above thread creation benchmark, with the exception that the thread stack
attribute is marked as PTHREAD_STACK_NOTLAZY, rather than the default on-demand “lazy stack” policy.
This variant causes the up-front physical allocation of the stack during thread creation, avoiding a virtual
memory (VM) page fault when the new thread first runs.

Initialization

pthread_attr_setstacklazy(&attr, PTHREAD_STACK_NOTLAZY);

Thread pthread_create / pthread_join (user stack)
This test is similar to the above thread creation benchmark, with the exception that an explicit block of
memory is provided as the stack for the new thread. This variant does not require the kernel to allocate any
memory or the VM subsystem to adjust the address space of the process.

Initialization

char userstack[PTHREAD_STACK_MIN + sizeof(struct _thread_local_storage)];

pthread_attr_setstackaddr(&attr, userstack);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 15

Message Queues
POSIX defines a set of message-passing facilities known as message queues, which allow for the transfer
of arbitrary data between cooperating processes. Under QNX Neutrino, message queues are not a core
kernel primitive, but are implemented through an optional user-level manager called mqueue. Although
aspects of the interface appear to be asynchronous, it is built on top of QNX Neutrino native synchronous
message passing, using the mqueue server to broker the transaction and perform store-and-forward
buffering. Message queues thus offer lower absolute performance than direct message passing, but are
useful in specific situations. For example, they provide flexibility with their buffering and asynchronous
notification facilities, and are a portable IPC mechanism for application code that must run under multiple
operating systems.

Unavailable mq_receive
This test measures the time taken to perform a non-blocking read attempt from an empty message queue.
Although no user data is transferred, this operation involves context switches and message passing with
the mqueue server to determine the queue state.

Initialization

mq = mq_open(“/mq”, O_RDWR|O_NONBLOCK|O_CREAT, S_IRUSR|S_IWUSR, NULL);

Benchmark Loop

mq_receive(mq, NULL, 0, NULL);

Empty mq_send / mq_receive (self)
This test measures the time for a single thread to alternately write a 256-byte message to an empty
message queue and then read back that same message. Because a single thread is manipulating the
message queue, there is no blocked reader for the message when it is sent, so it must be explicitly stored
within mqueue. Since the message queue is empty, the priority of the message is irrelevant, so it can be
placed at the front of the queue. This test requires two sets of context switches and message passing with
the mqueue server, plus implementation overheads due to message buffering.

Initialization

attr.mq_msgsize = 256, attr.mq_maxmsg = 1;
mq = mq_open(“/mq”, O_RDWR|O_CREAT, S_IRUSR|S_IWUSR, &attr);

Benchmark Loop

mq_send(mq, msg, 256, 0);
mq_receive(mq, msg, 256, NULL);

Empty mq_send / mq_receive (inter-thread, inter-process)
These tests measure the time to transfer a 256-byte message between two threads (or two different
processes) via an intermediary empty message queue. The entity sending the message is created at a lower
priority than the one receiving it. This relationship forces the threads (or processes) to alternately block

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 16

and unblock each other as the messages are transferred through the message queue. This ensures the
empty message queue will have a blocked reader, enabling an optimization of relaying the messages rather
than buffering them within mqueue. This test requires two sets of context switches and message passing
with the mqueue server.

Initialization

attr.mq_msgsize = 256, attr.mq_maxmsg = 1;
mq = mq_open(“/mq”, O_RDWR|O_CREAT, S_IRUSR|S_IWUSR, &attr);

Thread/Process 1 Benchmark Loop Thread/Process 2 Benchmark Loop (lower priority)

mq_receive(mq, msg, 256, NULL); mq_send(mq, msg, 256, 0);

Full mq_send / mq_receive
This test measures the time for a single thread to alternately read a 256-byte message from a full message
queue and then write back another message. Because a single thread is manipulating the message queue,
there is no blocked reader for the message when it is sent, requiring it to be explicitly stored within
mqueue. Since the message queue is non-empty, the priority of each message must be used to insert it into
its correct sorted position within the queue. The capacity of the message queue is 64 messages, and all
messages written into the queue are assigned random priorities. This test requires two sets of context
switches and message passing with the mqueue server, plus implementation overheads due to message
buffering and sorting.

Initialization

attr.mq_msgsize = 256, attr.mq_maxmsg = 64;
mq = mq_open(“/mq”, O_RDWR|O_CREAT, S_IRUSR|S_IWUSR, &attr);
for (fill = 0; fill < 64; ++fill)

mq_send(mq, msg, 256, rand() % MQ_PRIO_MAX);

Benchmark Loop

mq_receive(mq, msg, 256, &priority);
mq_send(mq, msg, 256, rand() % MQ_PRIO_MAX);

QNX Neutrino RTOS: Kernel Benchmark Methodology QNX Software Systems

 17

Summary
The methodology described in this document outlines the rationale behind the kernel benchmark tests
prepared by QNX Software Systems. Actual benchmark results for the tests described in the above
sections are available on a per-platform basis in the “QNX Neutrino Realtime OS: Kernel Benchmark
Results” documents. Please contact your local QNX sales representative for more information.

About QNX Software Systems
Founded in 1980, QNX Software Systems is the industry leader in realtime, microkernel OS
technology. The inherent reliability, scalable architecture, and proven performance of the QNX
Neutrino RTOS make it the most trusted foundation for future-ready applications in the
networking, automotive, medical, and industrial automation markets. Companies worldwide like
Cisco, Ford, Johnson Controls, Siemens, and Texaco depend on the QNX technology for their
mission- and life-critical applications. Headquartered in Ottawa, Canada, QNX Software
Systems maintains offices in North America, Europe, and Asia, and distributes its products
in more than 100 countries worldwide.

www.qnx.com

© 2003 QNX Software Systems Ltd. All rights reserved. QNX, Momentics, and Neutrino are registered trademarks of QNX Software Systems Ltd. in certain jurisdictions.
All other trademarks and trade names belong to their respective owners. 301635

www.qnx.com

